DataFrame对象:二维表数据结构,由行列数据组成的表格
常用index表示行,columns表示列
import pandas as pd
from pandas.core import series
pd.set_option('display.unicode.east_asian_width',True)
data = [[110, 105, 99], [105, 88, 115], [109, 120, 130]]
index = [0, 1, 2]
columns = ['语文', '数学', '英语']
df = pd.DataFrame(data=data, index=index, columns=columns)
# print(df)
'''
语文 数学 英语
0 110 105 99
1 105 88 115
2 109 120 130
'''
# print(df.columns) # Index(['语文', '数学', '英语'], dtype='object')
# print(df.index) # Int64Index([0, 1, 2], dtype='int64')
# 遍历DataFrame数据的每一列
for col in df.columns:
series = df[col]
print(series)
'''
0 110
1 105
2 109
Name: 语文, dtype: int64
0 105
1 88
2 120
Name: 数学, dtype: int64
0 99
1 115
2 130
Name: 英语, dtype: int64
'''
1.创建一个DataFrame对象
pandas.DataFrame(data,index,columns,dtype,copy)
# data表示数据,可以是ndarray数组,series对象、列表、字典等
# index表示行标签(索引)
# columns表示列标签(索引)
# dtype每一列数据的数据类型
# copy用于复制数据
# 返回值DataFrame
通过二维数组创建成绩表
import pandas as pd
pd.set_option('display.unicode.east_asian_width',True)
data = [[110, 105, 99], [105, 88, 115], [109, 120, 130]]
columns = ['语文', '数学', '英语']
df = pd.DataFrame(data=data, columns=columns)
print(df)
'''
语文 数学 英语
0 110 105 99
1 105 88 115
2 109 120 130
'''
2.通过字典创建DataFrame对象
value值只能是一维数组或单个的简单数据类型
# 数组,则要求所有的数组长度一致
# 单个数据,每行都需要添加相同数据
import pandas as pd
pd.set_option('display.unicode.east_asian_width', True)
df = pd.DataFrame({
'语文':[110, 105, 99],
'数学':[105, 88, 115],
'英语':[109, 120, 130],
'班级':'高一7班'
},index=[0,1,2])
print(df)
'''
语文 数学 英语 班级
0 110 105 109 高一7班
1 105 88 120 高一7班
2 99 115 130 高一7班
'''
'''
【DataFrame属性】
values 查看所有元素的值 df.values
dtypes 查看所有元素的类型 df.dtypes
index 查看所有行名、重命名行名 df.index df.index=[1,2,3]
columns 查看所有列名、重命名列名 df.columns df.columns=['语','数']
T 行列数据转换 df.T
head 查看前n条数据,默认5条 df.head() df.head(10)
tail 查看后n条数据,默认5条 df.tail() df.tail(10)
shape 查看行数和列数,[0]表示行,[1]表示列 df.shape[0] df.shape[1]
info 查看索引,数据类型和内存信息 df.info
【DataFrame函数】
describe 查看每列的统计汇总信息,DataFrame类型 df.describe()
count 返回每一列中的非空值的个数 df.count()
sum 返回每一列和和,无法计算返回空值 df.sum()
max 返回每一列的最大值 df.max()
min 返回每一列的最小值 df.min()
argmax 返回最大值所在的自动索引位置 df.argmax()
argmin 返回最小值所在的自动索引位置 df.argmin()
idxmax 返回最大值所在的自定义索引位置 df.idxmax()
idxmin 返回最小值所在的自定义索引位置 df.idxmin()
mean 返回每一列的平均值 df.mean()
median 返回每一列的中位数 df.median()
var 返回每一列的方差 df.var()
std 返回每一列的标准差 df.std()
isnull 检查df中的空值,空值为True,否则为False,返回布尔型数组 df.isnull()
notnull 检查df中的空值,非空值为True,否则为False,返回布尔型数组 df.notnull()
中位数又称中值,是指按顺序排列的一组数据中居于中间位置的数
方差用于度量单个随机变量的离散程序(不连续程度)
标准差是方差的算术平方根,反映数据集的离散程度
'''
3.导入.xls或.xlsx文件
# pandas.read_excel(io,sheetname=0,header=0,names=None,index_col=None,usecols=None,squeeze=False,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skiprows=None,nrow=None,na_values=None,keep_defalut_na=True,verbose=False,parse_dates=False,date_parser=None,thousands=None,comment=None,skipfooter=0,conver_float=True,mangle_dupe_cols=True,**kwds)
'''
io 字符串,xls或xlsx文件路径或类文件对象
sheet_name:None、字符串、整数、字符串列表或整数列表,默认值为0
字符串用于工作表名称;整数为索引,表示工作表位置
字符串列表或整数列表用于请求多个工作表,为None时则获取所有的工作表
sheet_name = 0 第一个Sheet页中的数据作为DataFrame对象
sheet_name = 1 第二个Sheet页中的数据作为DataFrame对象
sheet_name = 'Sheet1' 名为Sheet1的Sheet页中的数据作为DataFrame对象
sheet_name = [0,1,'Sheet3'] 第一个,第二个和名为Sheet3的Sheet页中的数据作为DataFrame对象
header:指定作为列名的行,默认值为0,即取第一行的值为列名。或数据不包含列名,则为header=None
names:默认值为None,要使用的列名列表
index_col:指定列为索引列,默认值为None,索引0是DataFrame对象的行标签
usecols:int、list或字符串,默认值为None
如为None,则解析所有列
如为int,则解析最后一列
如为list列表,则解析列号和列表的列
如为字符串,则表示以逗号分隔的Excel列字母和列范围列表
squeeze:布尔值,默认为False,如果解析的数据只包含一列,则返回一个Series
dtype:列的数据类型名称为字典,默认值为None
skiprows:省略指定行数的数据,从第一行开始
skipfooter:省略指定行数的数据,从尾部数的行开始
4.导入指定Sheet页的数据
import pandas as pd
pd.set_option('display.unicode.east_asian_width',True)
df = pd.read_excel('data.xlsx',sheet_name='Sheet1')
print(df.head())
# sheet_name=0表示第一个sheet页的数据,以此类推,如果不指定,则导入第一页
5.指定行索引导入Excel数据
import pandas as pd
pd.set_option('display.unicode.east_asian_width',True)
df1 = pd.read_excel('data.xlsx',header=None)
print(df1.head())
'''
Empty DataFrame
Columns: []
Index: [1, 3, 5]
'''
# 导入第一列数据
import pandas as pd
pd.set_option('display.unicode.east_asian_width',True)
df1 = pd.read_excel('data.xlsx',usecols=[0])
print(df1.head())
# 导入第一列和第四列
df1 = pd.read_excel('data.xlsx',usecols=[0,3])
'''
Empty DataFrame
Columns: []
Index: [1, 3, 5]
'''