逻辑归回

逻辑回归函数定义

逻辑回归

** g(z)就是传说中的sigmoid函数 **
sigmoid求导

** 因为是二分类问题,所以我们假设: **
假设

** 这里我们可以将其写成如下公式 **
公示整合

** 似然函数(这里表示为θ的似然): **
似然函数

** 对数似然 **
对数似然

求导

** 神奇的事情出现了,这里的公式和梯度下降的公式何其相似啊。我们称之为梯度上升
批梯度上升和随机梯度上升与我的上篇文章http://www.jianshu.com/p/52f5ea825f7f提到的批梯度下降和随机梯度下降是一样的逻辑。不过你需要仔细想想这两个公式有什么不同 **

梯度上升
%matplotlib inline
from numpy import *
#导入数据并整理
def loadDataSet(fileName):
    dataMat = []
    labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat,labelMat

#sigmoid函数
def sigmoid(inX):
    return 1.0/(1+exp(-inX))

#画图
def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet('testSet.txt')
    dataArr = array(dataMat)
    n = shape(dataArr)[0] 
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

#批梯度上升
def gradAscent(dataMatIn,classLabels,alpha = 0.001,maxCycles = 500):
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    m,n = shape(dataMatrix)
    weights = ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose()*error
    return weights

#测试
dataArr,labelArr = loadDataSet('testSet.txt')
weights = gradAscent(dataArr,labelArr,0.001,500)
plotBestFit(weights.getA())
批梯度上升
#随机梯度上升
def stocGradAscent(dataMatrix, classLabels, numIter=150):
    m,n=shape(dataMatrix)
    weights=ones(n)
    for j in range(numIter):
        dataIndex=range(m)
        for i in range(m):
            alpha=4/(1.0+j+i)+0.01
            randIndex=int(random.uniform(0,len(dataIndex)))
            h=sigmoid(sum(dataMatrix[randIndex]*weights))
            error=classLabels[randIndex]-h
            weights=weights+alpha*error*dataMatrix[randIndex]
            del[dataIndex[randIndex]]
    return weights

dataArr,labelMat = loadDataSet('testSet.txt')
weights = stocGradAscent(array(dataArr),labelMat,500)
plotBestFit(weights)
随机梯度上升

spark代码示例

public class LogisticWithElasticNet {
    /**
     * 日志控制
     */
    static{
        LogSetting.setWarningLogLevel("org");
        LogSetting.setWarningLogLevel("akka");
        LogSetting.setWarningLogLevel("io");
        LogSetting.setWarningLogLevel("httpclient.wire");
    }

    public static void main(String[] args) {
        String resources = Thread.currentThread().getContextClassLoader().getResource("").getPath();
        SparkConf conf = new SparkConf().setAppName("Logistic Regression with Elastic Net Example").setMaster("local[2]");
        SparkContext sc = new SparkContext(conf);
        SQLContext sqlContext = new SQLContext(sc);

        String path  = resources + "libsvm_data.txt";
        DataFrame training = sqlContext.read().format("libsvm").load(path);

        LogisticRegression lr = new LogisticRegression()
                .setMaxIter(10)
                .setRegParam(0.3)
                .setElasticNetParam(0.8);

        // Fit the model
        LogisticRegressionModel lrModel = lr.fit(training);

        System.out.println("Coefficients: "
                + lrModel.coefficients() + " Intercept: " + lrModel.intercept());

        // Extract the summary from the returned LogisticRegressionModel instance trained in the earlier example
        LogisticRegressionTrainingSummary trainingSummary = lrModel.summary();

        // Obtain the loss per iteration.
        double[] objectiveHistory = trainingSummary.objectiveHistory();
        for (double lossPerIteration : objectiveHistory) {
            System.out.println(lossPerIteration);
        }

        // Obtain the metrics useful to judge performance on test data.
        // We cast the summary to a BinaryLogisticRegressionSummary since the problem is a binary classification problem.
        BinaryLogisticRegressionSummary binarySummary =
                (BinaryLogisticRegressionSummary) trainingSummary;

        // Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.
        DataFrame roc = binarySummary.roc();
        roc.show();
        roc.select("FPR").show();
        System.out.println(binarySummary.areaUnderROC());

        // Get the threshold corresponding to the maximum F-Measure and rerun LogisticRegression with this selected threshold.
        DataFrame fMeasure = binarySummary.fMeasureByThreshold();
        double maxFMeasure = fMeasure.select(functions.max("F-Measure")).head().getDouble(0);
        double bestThreshold = fMeasure.where(fMeasure.col("F-Measure").equalTo(maxFMeasure))
                .select("threshold").head().getDouble(0);
        lrModel.setThreshold(bestThreshold);
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355

推荐阅读更多精彩内容