cellMiner药物敏感性分析
1.数据下载
https://discover.nci.nih.gov/cellminer/home.do
下载并解压,放在工作目录下
2.药物数据整理
rm(list=ls())
library(stringr)
library(rio)
drug0 = rio::import("DTP_NCI60_ZSCORE.xlsx", skip = 8)
drug0 = drug0[,-c(67,68)]
k1 = drug0$`Drug name`!="-";table(k1)
## k1
## FALSE TRUE
## 3766 21087
table(drug0$`FDA status`)
##
## - Clinical trial FDA approved
## 23993 546 314
k2 = drug0$`FDA status`!="-";table(k2)
## k2
## FALSE TRUE
## 23993 860
drug0 = drug0[k1&k2,]
drug = apply(drug0[,-(1:6)],2,as.numeric)
rownames(drug)= drug0$`Drug name`
drug[1:4,1:4]
## BR:MCF7 BR:MDA-MB-231 BR:HS 578T BR:BT-549
## METHOTREXATE 0.70 -1.22 -1.89 -0.88
## 6-THIOGUANINE 0.48 -0.31 -1.09 -0.44
## 6-MERCAPTOPURINE 0.70 -0.44 -0.55 -1.44
## Colchicine 0.32 NA NA NA
# 缺失值处理
library(impute)
library(limma)
drug = impute.knn(drug)$data #报错
## Error in impute.knn(drug): a column has more than 80 % missing values!
a = apply(drug, 2, function(x){sum(is.na(x))/length(x)})
tail(sort(a),10) # 确实有超过80%NA 的列,要删掉
## RE:A498 RE:CAKI-1 BR:HS 578T LE:K-562 LC:HOP-92 BR:BT-549 BR:T-47D
## 0.04651163 0.04883721 0.05348837 0.05465116 0.05697674 0.06046512 0.06860465
## LE:SR LC:EKVX ME:MDA-N
## 0.07906977 0.19186047 0.84534884
drug = drug[,-which.max(a)]
drug = impute.knn(drug)$data
drug = avereps(drug)
3.表达矩阵整理
exp0 = rio::import("RNA__RNA_seq_composite_expression.xls",skip = 10)
exp = as.matrix(exp0[,-(1:6)])
rownames(exp) = exp0$`Gene name d`
exp = avereps(exp)
exp = exp[,-which.max(a)] #上面删掉了一列,这里也必须删掉
identical(colnames(exp),colnames(drug))
## [1] TRUE
5.药敏分析
其实本质上就是基因表达量与药物IC50值的相关性分析
tinyarray 里的cor.one函数支持一列与所有列的相关性分析
g = "EGFR"
dat = t(rbind(exp[g,],drug))
colnames(dat)[1] = g
dat[1:4,1:4]
## EGFR METHOTREXATE 6-THIOGUANINE 6-MERCAPTOPURINE
## BR:MCF7 0.242 0.70 0.48 0.70
## BR:MDA-MB-231 3.913 -1.22 -0.31 -0.44
## BR:HS 578T 2.428 -1.89 -1.09 -0.55
## BR:BT-549 3.215 -0.88 -0.44 -1.44
library(tinyarray)
re = cor.one(dat,g)
k = re$p.value<0.05 & abs(re$cor)>0.5;table(k)
## k
## FALSE TRUE
## 752 15
remini = re[k,]
remini
## p.value cor obsnumber
## Noscapine 1.740620e-05 -0.5278020 59
## Tamoxifen 1.920620e-06 -0.5748512 59
## ciclosporin 2.433162e-05 -0.5199893 59
## auranofin 1.013795e-07 -0.6280054 59
## Staurosporine 6.910490e-06 0.5483959 59
## Dasatinib 5.932590e-07 0.5972467 59
## XAV-939 3.766265e-05 0.5095013 59
## Sapitinib 1.906967e-05 0.5256921 59
## Pipamperone 1.515924e-05 -0.5309705 59
## BMS-690514 3.847482e-06 0.5607794 59
## Bafetinib 3.823063e-05 -0.5091358 59
## spebrutinib 8.142489e-07 0.5913741 59
## S-63845 5.427220e-06 -0.5535653 59
## AZD-5991 5.042577e-05 -0.5022987 59
## BLU-667 5.958846e-07 0.5971656 59
可以根据相关系数与p值筛选药物-基因对啦
6.可视化
相关性点图
library(ggpubr)
pdat = data.frame(dat[,c("Tamoxifen","EGFR")],
check.names = F)
colnames(pdat)
## [1] "Tamoxifen" "EGFR"
sp1 <- ggscatter(pdat, x = "Tamoxifen", y = "EGFR",
add = "reg.line", # Add regressin line
add.params = list(color = "blue", fill = "lightgray"), # Customize reg. line
conf.int = TRUE # Add confidence interval
) + stat_cor(method = "pearson")
sp1
箱线图
pdat$group = ifelse(pdat$EGFR>median(pdat$EGFR),"high","low")
ggboxplot(pdat,"group","Tamoxifen",fill = "group")+
stat_compare_means(comparisons = list(c("high","low")),
aes(label = after_stat(p.signif)))+
scale_fill_manual(values = c("#2874C5", "#f87669"))