关联分析(apriori & FP-tree)基于python

关联分析是为了探索不同集合共同出现的频率的一种方法,适用于分析名称变量,比如著名的啤酒尿布分析。通过分析消费者购物清单,发现啤酒和尿布经常出现在同一张清单上。

apriori原理介绍

apriori是一种常见的关联分析方法。它基于一个前提,就是频繁集的子集一定是频繁集。这句话的倒过来讲同样成立,非频繁集的母集一定也是非频繁集,我们将这个命题称之为频繁集定理。
寻找频繁集涉及到两个频率,一个是集合在所有数据中出现的频率,称之为支持度。另一个是当集合A出现是,集合B也同时出现的频率,称之为置信度。

举例:
image.png

可以想象,第一个集合是单个元素构成的,例如{a},{a}的支持度为4/5=0.8,当a存在时,b的置信度是2/4=0.5。第二层可以再{a,b}的基础上继续计算支持度和相应的置信度。如果用这种方式逐个匹配,会发现计算比较大。根据频繁集定理,我们可以设置一个最小支持度,当集合支持度小于最小支持度,该集合的所有母集也肯定都小于最小支持度,这部分数据可以直接省略。例如当我们把最小支持度设为0.7时,第一层的集合就剩下{a}。

apriori python实现

def loadDataSet():#新建数据集
    return [[1,3,4],[2,3,5],[1,2,3,5],[2,5]]
def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
    C1.sort()
    return map(frozenset, C1)
def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:
        for can in Ck:
            if can.issubset(tid):
                ssCnt[can] = ssCnt.get(can, 0) + 1
    #print(D)
    numItems = float(len(D))
    retList = []
    supportData = {}
    for key in ssCnt:
        support = ssCnt[key] / numItems
        if support >= minSupport:
            retList.insert(0, key)
        supportData[key] = support
    return retList, supportData

def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i + 1, lenLk):
            # 前k-2项相同时,将两个集合合并
            L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
            L1.sort(); L2.sort()
            if L1 == L2:
                retList.append(Lk[i] | Lk[j])
    return retList
def apriori(dataSet, minSupport=0.5):##支持度计算
    C1 = list(createC1(dataSet))
    D = list(map(set, dataSet))
    L1, supportData = scanD(D, C1, minSupport)
    L = [L1]
    k = 2
    while (len(L[k-2]) > 0):
        Ck = aprioriGen(L[k-2], k)
        Lk, supK = scanD(D, Ck, minSupport)
        supportData.update(supK)
        L.append(Lk)
        k += 1
    return L, supportData

def generateRules(L, supportData, minConf=0.7):  
    bigRuleList = []  
    for i in range(1, len(L)):  # 不处理单元素集合L[0]  
        for freqSet in L[i]:  
            H1 = [frozenset([item]) for item in freqSet]  
            if (i > 1):  # 当集合中元素的长度大于2的时候,尝试对集合合并。  
# 比如:[2,3,5]=>{[2,3],5}  
                rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)  
            else:  # 对于2元组,直接计算置信度  
                calConf(freqSet, H1, supportData, bigRuleList, minConf)  
    return bigRuleList  


def calConf(freqSet, H, supportData, brl, minConf=0.7):  #置信度计算
    prunedH = []  
    for conseq in H:  
        conf = supportData[freqSet] / supportData[freqSet - conseq]  # 置信度  
        if conf >= minConf:  
            print (freqSet - conseq,'supp',supportData[freqSet - conseq] , "--->", conseq, "conf", conf ) 
            brl.append((freqSet - conseq, conseq, conf))  
            prunedH.append(conseq)  
#         if (len(freqSet) > 2):  
#             conf = supportData[freqSet] / supportData[conseq]  # 置信度  
#         if conf >= minConf:  
#             print (conseq, "--->", freqSet - conseq, "conf", conf )
#             brl.append((conseq, freqSet - conseq, conf))  
#             prunedH.append(freqSet - conseq)  
    return prunedH  



def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7):  
    m = len(H[0])  
    if (len(freqSet) > (m + 1)):  
        Hmp1 = aprioriGen(H, m + 1)  
        Hmp1 = calConf(freqSet, Hmp1, supportData, brl, minConf)  
        if (len(Hmp1) > 1):  
            rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)  

将上述代码存储成apriori.py

#引用并计算
import apriori####将上面两个过程写入apriori,调用

dataSet = apriori.loadDataSet()
print(dataSet)
C1 = apriori.createC1(dataSet)
D = list(map(set, dataSet))
print(type(D))
L1, suppDat = apriori.scanD(D, C1, 0.5)
print(L1)
L, suppData = apriori.apriori(dataSet)
print(L)
L, suppData = apriori.apriori(dataSet, minSupport=0.5)
print(L)
ruleList = apriori.generateRules(L, suppData,  minConf=0.5) 



FP-tree原理介绍

apriori算法每次发现潜在的频繁集都需要重新扫描数据集来计算,速度堪忧。
因此有人提出了FP-tree算法,这个算法优点明显,只需要对数据集扫描两次就可以完成寻找频繁集的任务。
第一次扫描,对所有的单元素集合删除支持度过小的集合且建立频数指针,如a:1。过滤并对数据集进行排序。
第二次扫描,建立FP树。这颗树是怎么建的呢,从头开始读入数据,将数据添加到已有路径上,如果路径不存在则新建路径,同时指针中频数变化。这样问题就集中在对路径和指针的保存上。

FP-tree python实现

网上这部分代码很多,这里就略过了

参考资料:机器学习实战

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容