数学之美--谈谈分词

保留初心,砥砺前行

看完了《数学之美》第三章才想起来做一些记录会有更好的效果。

所以从第四章开始也不晚,况且前两章只是相当于介绍了数学的某些历史。

从这篇开始以数学之美为开头的文章更多的是为了自己看,记录一些书中的重点。

如果恰好也有喜欢数学的你看到了这些文章,可以看做是对数学之美这本书的一个简要性概述。

最后,希望高手指正。

数学的魅力就在于将复杂的问题简单化。

这里是我上午写的一篇“文章”,它太短,所以不能称之为一篇文章;然而它承载的内容又太重,早就超过了一篇文章的范畴。

虽然我一直相信的是,哲学是万物的科学,是一切科学的基础和指导,并且这样的信条一直再指导我的生活和学习。

但是在这里我认为,数学是一切问题最终的解决方法,与之前我所相信的并不冲突。

在我看来,数学可以给一切以一个简单的解决方案,而计算机、程序则是这种解决方案的实践。

可以解决一切的理论加上可以实现一切的实践,对,就是上帝。

他甚至(这是为了节目效果的夸张说法==)可以制造生命(人工智能)。

下面是分割线
·=================================================·

扯远了回归正题,来,数学之美第四章:

第三章中说可以使用统计语言模型进行自然语言处理,而自然语言模型建立在词的基础上。在英语等语言中,每个词中间都有间隔,而在中文、日文等语言中,一句话由很多词语组成,但并不存在明显的分隔符。因此对这种语言进行基于统计语言模型的自然语言处理,就需要进行分词。

例:
中国航天官员应邀到美国与太空总署官员开会。
中国/航天/官员/应邀/到/美国/与/太空/总署/官员/开会。

分词最基本的思想就是“查字典”。
简单来说就是把句子从左到右扫描一遍,遇到字典里有的词就标识出来,如果遇到复合词,就按最长匹配原则(上海大学,不按上海和大学分,按最长匹配原则)。

然而当词语存在二义性时,例如:
发展中国家
按照上述规则,从左到右查字典,得到的结论是
发展/中国/家
然而实际上应该是
发展/中/国家

对于这种情况,上一章讲到的统计语言模型可以解决这个问题。

假如一个句子有三种分词方法:
A1, A2, A3, ..., Ak
B1, B2, B3, ..., Bm
C1, C2, C3, ..., Cn
分词得到的结果不同,分成的词的个数也不同。
此时问题又成了上一章中的问题,如何才能判断哪一种才是最好的。
最好的应该是保证分完词后这个句子出现的概率最大,如下所示:
P(A1, A2, A3, ..., Ak) > P(B1, B2, B3, ..., Bm)
并且
P(A1, A2, A3, ..., Ak) > P(C1, C2, C3, ..., Cn)
概率最大的就是最好的分词方法。

最后,本章提到了两点:

  • 分词技术已经成熟,提升空间微乎其微
  • 如今手写输入英文越来越流行,手写输入的英文单词之间的间隔并不如机器打印的这么明显,因此也需要分词技术。

在延伸阅读中,提到了关于分词的粒度的问题。
例如词语‘清华大学’,有些人认为分到清华大学这个层次恰到好处,因为他可以说是一个专有名词;而另一些人认为要分成清华和大学,他们说清华是用来修饰大学的,要是不拆开,无法体现他们的修饰关系。
现实的情况是,我们需要针对不同的应用,进行不同层次的分词。
在机器翻译中,粒度大的分词效果更好,而在网页搜索中,粒度小的效果更好。

支持不同粒度的分词器模型:

字串 --》基本词表(例如清华,大学) + 统计语言模型L1 --》基本词串
基本词串--》复合词表(例如清华大学) + 统计语言模型L2 --》复合词串

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 常用概念: 自然语言处理(NLP) 数据挖掘 推荐算法 用户画像 知识图谱 信息检索 文本分类 常用技术: 词级别...
    御风之星阅读 13,253评论 1 25
  • 本文转自 刘未鹏的博客! 概率论只不过是把常识用数学公式表达了出来。 记得读本科的时候,最喜欢到城里的计算机书店里...
    Bioquan阅读 10,327评论 1 29
  • 1.1 统计语言模型 香农(Claude Shannon)就提出了用数学的办法处理自然语言。首先成功利用数学方法解...
    wzz阅读 6,143评论 0 10
  • 2801# 数学之美-Statistical Language Models Google 的使命是 "整合全球信...
    ucudrrad阅读 3,971评论 0 3
  • 很早之前看了几篇博文,只留下模糊印象 。这次是在学习人工智能的基础知识后再看,其中研究自然语言的方法从基于规则转变...
    轻舟阅读 11,278评论 0 9

友情链接更多精彩内容