GEO上都是芯片数据吗?GSE开头的都是芯片吗

看过很多GEO数据挖掘的教程,一直都是芯片数据举例。我自己也根据流程(Taolu)分析过好几个geo芯片数据。一直有个疑惑,

GEO上都是芯片数据吗?

GSE开头的都是芯片数据吗?

今天在大神健明老师的敦促下,我又一次打开熟悉又陌生的GEO页面。重新读一下GEO数据库的介绍。熟悉是因为这个页面我打开过不止百次了,陌生是因为从没认真读过这个页面的内容。


image.png

开篇第一句就写了芯片和测序数据我们都是接受的。
但是我看到的GEO挖掘实例都是芯片为例。没见过GEO上的测序数据是啥样。所以这也是导致我产生这个错觉的主要原因。我需要找到一个不是芯片的例子来看看。毕竟眼见为实嘛。于是我开始搜索。希望找到GEO数据的一些存放规律。

1.解读GEO数据存放规律及下载,一文就够

首先看到了健明老师这一篇,开篇就说了

GEO数据库起先只是为表达芯片数据准备的,后期纳入了各种NGS组学数据,文章里面会给出数据地址,GSE ID号,由此我们就可以进入GEO数据库,进而了解它!

image.png

其实只需要理解下面的4个概念。
GEO Platform (GPL)
GEO Sample (GSM)
GEO Series (GSE)
GEO Dataset (GDS)
理解起来也很容易。一篇文章可以有一个或者多个GSE数据集,一个GSE里面可以有一个或者多个GSM样本。多个研究的GSM样本可以根据研究目的整合为一个GDS,不过GDS本身用的很少。而每个数据集都有着自己对应的芯片平台,就是GPL。

然后还是芯片挖掘的例子

2.从GEO数据库下载得到表达矩阵 一文就够

然后又看到了这一篇,文中提到geo上的illumina测序芯片。这个illumina我是知道的,这个公司就是二代测序的代表,有点靠近转录组的意思了。

image.png

3.GEO数据挖掘技术可以应用到表达芯片也可以是转录组测序

最终定位到这一篇解决了我的疑惑。

那如果是RNA-seq测序数据呢?
通常呢,RNA-seq测序数据并不会把其表达矩阵存储在Series Matrix File(s) 里面,所以 你使用我的标准代码:

rm(list = ls())  ## 魔幻操作,一键清空~
options(stringsAsFactors = F)#在调用as.data.frame的时,将stringsAsFactors设置为FALSE可以避免character类型自动转化为factor类型
# 注意查看下载文件的大小,检查数据 
f='GSE103611_eSet.Rdata'
# https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103611
library(GEOquery)
# 这个包需要注意两个配置,一般来说自动化的配置是足够的。
#Setting options('download.file.method.GEOquery'='auto')
#Setting options('GEOquery.inmemory.gpl'=FALSE)
if(!file.exists(f)){
  gset <- getGEO('GSE103611', destdir=".",
                 AnnotGPL = F,     ## 注释文件
                 getGPL = F)       ## 平台文件
  save(gset,file=f)   ## 保存到本地
}
load('GSE103611_eSet.Rdata')  ## 载入数据
class(gset)  #查看数据类型
length(gset)  #
class(gset[[1]])
gset
# assayData: 352859 features, 48 samples

比如对 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106292 上面的代码就拿不到表达矩阵

因为,这个是RNA-seq数据,作者会把自己的表达矩阵变成Excel表格,方便大家探索!

image.png

记住,我这里强调了是作者自己的表达矩阵,因为RNA-seq数据分析流程还不一样!参数不一样,软件不一样,数据库不一样,而且最后的表达矩阵的表现形式又不一样!是原始的counts还是RPKM,TPM都不一样!如果作者确实不上传其表达矩阵,你也没办法,只能是自己走RNA-seq数据分析流程:

image.png

这里面的知识细节太复杂了,我就不一一展开!建议大家看我们阅读量过10万的RNA-seq系列推文,比如:表达矩阵的归一化和标准化,去除极端值,异常值
然后我想下载下来看看,先用网络下载一个是不完整是空白,换用手机热点,提示需要14天才能下载完

image.png

等以后网速好的时候再看好了。至少我已经知道了GEO上是有测序数据的

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容