11/19读书笔记(2)

1、蒙特卡洛搜索算法和基于深度学习的模式识别促成了AlphaGo的成就。

据各方研究来看,AG不是自己想出棋着来,而是学习了人类高手的千万盘棋局(这就是大数据)。它记录下每个棋局中的每个局面,把上百万个局面当作输入进行训练,通过一个多层神经网络来预测人类高手会走出的下一着。经过巧妙的神经网络设计与训练,这个多层神经网建模了人类高手的“棋感”——对于当前局面,已知以往下棋历史中的胜率。在实际下棋时,计算机可以通过视觉识别记录下棋局,然后和以往的棋局数据比较,找到相同的模式(局面),再检索不同局面往后发展下去,根据以往下棋史中的胜率高低选出一些高质量的候选点供走子,而不必每个候选点都去尝试一遍,从而极大地减少系统运算量,不至于让系统“殚精竭虑”而死。这就像人类,不会穷尽所有候选点,而是根据经验和感觉选择某些点。选出几个点之后,人类还是要比较、计算哪个点更好。对于机器来说,这个计算就交给蒙特卡洛搜索算法。

蒙特卡洛树形搜索是对以往决策树算法的优化。对于以往的决策树算法,即便给了一个高质量的候选点,对于接下来的选择,它同样要进行穷举,在每个要选择的地方做一次分支,同样会遇到可选路径数量的指数爆炸。

蒙特卡洛方法就体现了概率学的精妙。假设在某个棋局局面下,深度学习网络给出了三个候选落子办法A、B、C,以这三个点为根节点,分别往下走子,可以想象成三个树,每棵树还有无数分支。蒙特卡洛搜索不去穷尽所有分支,而是派出300万只蚂蚁分别从A、B、C出发,每个点100万只,飞速向树梢爬(也就是往下黑白棋交替走子直到决出胜负,基本上走200步就会分出胜负),总有部分蚂蚁走到最高点(也就是决出胜负,假设蚂蚁走到终点的情况代表黑子胜,没走到终点的情况代表白子胜)。

假设从A点出发的100万只蚂蚁有30万只到达终点,B的为50万只,C为40万只,系统就认为黑子走B点胜率更高,就会选择B点。这就是概率学的取样算法,相比逐项穷举法,极大地缩减了计算量。

CPU芯片和GPU(图形处理器)芯片同时进行神经网络计算与蒙特卡洛树形搜索,模拟海量的终盘局面,这是人类计算能力无法相比的。由于采用深度学习建模了人类高手的棋感,看上去人工智能拥有了人类的大局观,而这个大局观恰恰蕴含在人类高手的千万盘对弈数据里。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容