自然语言处理N天-Day0402文本可视化技巧

新建 Microsoft PowerPoint 演示文稿 (2).jpg

说明:本文依据《中文自然语言处理入门实战》完成。目前网上有不少转载的课程,我是从GitChat上购买。

第四课 文本可视化技巧

关系图

关系图法,是指用连线图来表示事物相互关系的一种方法。最常见的关系图是数据库里的 E-R 图,表示实体、关系、属性三者之间的关系。在文本可视化里面,关系图也经常被用来表示有相互关系、原因与结果和目的与手段等复杂关系,下面我们来看看如何用 Python 实现关系图制作。
在这里使用了NetworkX

classes = df['class'].values.tolist()
classrooms = df['classroom'].values.tolist()
nodes = list(set(classes + classrooms))
weights = [(df.loc[index, 'class'], df.loc[index, 'classroom']) for index in df.index]
weights = list(set(weights))
# 设置matplotlib正常显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用黑体显示中文
plt.rcParams['axes.unicode_minus'] = False
colors = ['red', 'green', 'blue', 'yellow']
# 有向图
DG = nx.DiGraph()
# 一次性添加多节点,输入的格式为列表
DG.add_nodes_from(nodes)
# 添加边,数据格式为列表
DG.add_edges_from(weights)
# 作图,设置节点名显示,节点大小,节点颜色
nx.draw(DG, with_labels=True, node_size=1000, node_color=colors)
plt.show()

热力图

地理热力图,是以特殊高亮的形式显示用户的地理位置,借助热力图,可以直观地观察到用户的总体情况和偏好。

其实就是将地理名词转为经纬度再与数据大小结合生成热力图,Citespace中调用的是Google接口,教程中调用的是百度接口。

#经纬度转换
def getlnglat(address):
    url = 'http://api.map.baidu.com/geocoder/v2/'
    output = 'json'
    ak = 'sqGDDvCDEZPSz24bt4b0BpKLnMk1dv6d'
    add = quote(address) #由于本文城市变量为中文,为防止乱码,先用quote进行编码
    uri = url + '?' + 'address=' + add  + '&output=' + output + '&ak=' + ak
    req = urlopen(uri)
    res = req.read().decode() #将其他编码的字符串解码成unicode
    temp = json.loads(res)  #对json数据进行解析
    return temp

使用Folium库进行热力图绘制地图

lat = np.array(cities["lat"][0:num])  # 获取维度之维度值
lon = np.array(cities["lng"][0:num])  # 获取经度值
pop = np.array(cities["count"][0:num], dtype=float)  # 获取人口数,转化为numpy浮点型
data1 = [[lat[i], lon[i], pop[i]] for i in range(num)]  # 将数据制作成[lats,lons,weights]的形式
map_osm = folium.Map(location=[35, 110], zoom_start=5)  # 绘制Map,开始缩放程度是5倍
HeatMap(data1).add_to(map_osm)  # 将热力图添加到前面建立的map里
file_path = dir + "heatmap.html"
map_osm.save(file_path)

有兴趣的可以看看这个链接:https://zhuanlan.zhihu.com/geoman-blog

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容