机器学习-周志华 神经网络

网络可以表达复杂的模型,是简单模型的嵌套。简单模型进行计算,输出需要经过转化,来决定此神经元是否被激活,计算到此的参数是否要传递下去。理想为阶跃函数,但是不具备连续性,一般为sigmoid函数。

网络复杂时,需要通过BP(误差逆传播)算法对参数进行调整。

网络的构成:神经元,神经元之间连接的线。

多层网络,BP算法(误差逆传播)流程:

1。随机初始化网络中的权重和阈值

2. 重复下面的流程:  按照网络现在的权重和阈值,信号向前流动。一层一层向前计算梯度,更新权重。更新完回到1。

上述标准BP算法过程是针对一个样本去计,更新阈值频繁,多次之间很可能效果互相抵消。

累计BP算法,最优化的是训练集上的误差。

复杂的网络可以无限逼近任意复杂度的连续函数,但是要调整层数、每层神经元个数,比较难。

表达能力强,很容易过拟合。防止过拟合的方法:1.训练过程中,在训练集上误差降低,验证集上的误差升高时,early stoping,返回使得验证集最优的参数。2.正则化。思想: 目标函数中,加入一个用于描述网络复杂度的部分

全局最优,局部最优:

跳出局部最优的方法:1.设定不同初始值,多次实验,取最优。2.在训练过程中,以一定的概率接受更差的结果。3.随机梯度下降。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容

  • 积跬步以致千里,积怠惰以致深渊 注:本篇文章在整理时主要参考了 周志华 的《机器学习》。 主要内容 神经网络是一种...
    指尖上的魔术师阅读 1,290评论 0 2
  • 1. 明天中秋节,也是爸爸的生日。 自从05年离开这个小县城,再回来的次数,是可以掰着指头算清的。 很多节日,甚至...
    虎七七阅读 1,240评论 12 9
  • 得一场感冒,如山崩地裂,后遗症如雨后春笋,一个接一个冒出来,整个人都不好了!一下子老得面目全非!怎是一个“惨”能形...
    依然朵儿阅读 258评论 0 1
  • 《和梦得夏至忆苏州呈卢宾客》 忆在苏州日,常谙夏至筵。 粽香筒竹嫩,炙脆子鹅鲜。 水国多台榭,吴风尚管弦。 每家皆...
    章雪峰阅读 1,621评论 7 6
  • 人总是要跟不同类型,不同层次,不同行业的人打交道,其实会发现各个领域的人都有自己的独特魅力,今天中午跟一位岁数大我...
    行走在路上呢阅读 912评论 0 0