ImageAI:图像预测

ImageAI 提供4种不同的算法及模型来执行图像预测,通过以下简单几个步骤即可对任何图片执行图像预测。提供用于图像预测的4种算法包括 SqueezeNet,ResNet,InceptionV3 和 DenseNet。这些算法中的每一个都有单独的模型文件,您必须根据所选算法使用相对应的模型文件,请单击以下链接下载所选算法的模型文件:

  • SqueezeNet(文件大小:4.82 MB,预测时间最短,精准度适中)
  • ResNet50 by Microsoft Research (文件大小:98 MB,预测时间较快,精准度高)
  • InceptionV3 by Google Brain team (文件大小:91.6 MB,预测时间慢,精度更高)
  • DenseNet121 by Facebook AI Research (文件大小:31.6 MB,预测时间较慢,精度最高)

待检测的图片 1.jpg


创建一个文件夹,把1.jpg放到文件夹中,创建一个FirstPrediction.py,代码如下:

from imageai.Prediction import ImagePrediction
import os
execution_path = os.getcwd()

prediction = ImagePrediction()
prediction.setModelTypeAsResNet()
prediction.setModelPath(os.path.join(execution_path, "resnet50_weights_tf_dim_ordering_tf_kernels.h5"))
prediction.loadModel()

predictions, probabilities = prediction.predictImage(os.path.join(execution_path, "1.jpg"), result_count=5 )
for eachPrediction, eachProbability in zip(predictions, probabilities):
    print(eachPrediction + " : " + eachProbability)

运行代码
python FirstPrediction.py
示例结果

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。