美食物管理与推荐系统Python+Django网站开发+协同过滤推荐算法应用【计算机课设项目推荐】

一、介绍

美食管理与推荐系统。本系统使用Python作为主要开发语言开发的一个美食管理推荐网站平台。
网站前端界面采用HTML、CSS、BootStrap等技术搭建界面。后端采用Django框架处理用户的逻辑请求,并将用户的相关行为数据保存在数据库中。通过Ajax技术实现前后端的数据通信。
创新点:项目中使用协同过滤推荐算法通过用户对美食的评分作为推荐数据基础,通过计算相似度实现对当前登录用户的个性化推荐。
主要功能有:

  • 系统分为管理员和用户两个角色
  • 用户可以登录、注册、查看美食、购买食物、收藏食物、发布评论、对食物评分、查看个人收藏、查看个人订单、编辑个人信息、个人充值、个性化推荐等功能
  • 管理员在后台系统中可以对用户和食物信息进行管理

二、系统效果图片展示

img_01_07_19_24_12.jpg

img_01_07_19_24_27.jpg
img_01_07_19_24_36.jpg

img_01_07_19_24_53.jpg

三、演示视频 and 代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/ze33rzbcryp4v6fr

四、基于用户的协同过滤推荐算法介绍

基于用户的协同过滤推荐算法是一种常见的推荐系统方法,它主要通过分析用户的行为和偏好来进行推荐。这个算法的核心思想是:如果两个用户在过去喜欢过类似的东西,那么他们在未来也很可能会喜欢相似的东西。
这个算法主要分为三个步骤:

  1. 找到相似用户:首先,算法会计算用户之间的相似度。这通常是通过比较他们的历史行为(如评分等)来实现的。相似度可以用多种方式计算,如欧几里得距离、余弦相似度等。
  2. 预测用户的喜好:一旦找到了与目标用户相似的用户群体,算法就会分析这些相似用户的喜好来预测目标用户可能感兴趣的项目。
  3. 生成推荐列表:最后,根据预测的喜好,为目标用户生成一个推荐列表。

下面用Python代码演示一个非常简单的基于用户的协同过滤推荐算法示例。假设我们有一组用户的电影评分数据,我们将尝试为其中一个用户推荐电影。

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

# 示例数据:用户的电影评分(0表示未观看)
ratings = np.array([
    [5, 4, 0, 0, 3],
    [0, 3, 4, 0, 3],
    [2, 0, 0, 5, 0],
    [0, 0, 5, 4, 0]
])

# 计算用户间的相似度
similarity = cosine_similarity(ratings)

# 选择目标用户(比如第一个用户)
target_user = ratings[0]

# 计算其他用户对目标用户未看电影的评分加权和
scores = np.dot(similarity[0], ratings)

# 推荐评分最高的电影
recommended_movie_index = np.argmax(scores)
print("推荐的电影索引是:", recommended_movie_index)

这个例子中,我们使用了余弦相似度来计算用户之间的相似度,并为第一个用户推荐了一个他可能喜欢的电影。这只是一个基础示例,实际应用中算法会更加复杂和精细。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容