后续补充
Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 过拟合、欠拟合及其解决方案1.过拟合、欠拟合的概念2.权重衰减3.丢弃法 训练误差和泛化误差在解释上述现象之前,我...
- 过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 ...
- 3.12 权重衰减 对于过拟合现象,即模型的训练误差远小于它在测试集上的误差。虽然增大训练数据集可能会减轻过拟合,...
- (学习笔记,待补充)本文目录如下: 1.过拟合和欠拟合1.1过拟合和欠拟合的概念1.2.防止过拟合的方法1.3.防...