【可能是全网最丝滑的LangChain教程】三、快速入门LLMChain

系列文章地址

【可能是全网最丝滑的LangChain教程】一、LangChain介绍 - 简书 (jianshu.com)
【可能是全网最丝滑的LangChain教程】二、LangChain安装 - 简书 (jianshu.com)

使用LangChain构建应用

LangChain支持构建应用程序,将外部数据源和计算源连接到LLM。我们将从一个简单的 LLM 链开始,它只依赖于提示模板中的信息来响应。 接下来,我们将构建一个检索链,该链从单独的数据库获取数据并将其传递到提示模板中。 然后,我们将添加聊天记录,以创建对话检索链。这允许您以聊天方式与此 LLM 进行交互,因此它会记住以前的问题。 最后,我们将构建一个代理,利用 LLM 来确定它是否需要获取数据来回答问题。

LLMChain

LangChain可以通过 API 提供的模型(如 OpenAI)和本地开源模型(如 Ollama)等集成。开源模型的部署依赖于我们拥有的硬件配置,我将不做过多分析。

这里我将使用OpenAI提供的API做示例。

首先,我们需要导入 LangChain x OpenAI 集成包。

pip install langchain-openai

访问 API 需要一个 API 密钥,您可以通过创建一个帐户并前往此处来获取该密钥。

一旦我们有了密钥,我们就要通过运行以下命令将其设置为环境变量(非必须):

export OPENAI_API_KEY="..."

然后,我们可以初始化模型:

from langchain_openai import ChatOpenAI 
llm = ChatOpenAI()

如果您不想设置环境变量,则可以在启动 OpenAI LLM 类时直接通过命名参数传入密钥:openai_api_key

from langchain_openai import ChatOpenAI 
llm = ChatOpenAI(openai_api_key="...")

一旦你安装并初始化了你选择的LLM,我们就可以尝试使用它了!

让我们问它“请介绍一下李白?” 。

llm.invoke("介绍一下李白?")

输出如下:

AIMessage(content='李白(701年-762年),字太白,号青莲居士,唐朝时期伟大的浪漫主义诗人,被后人誉为“诗仙”。他出生于今天的陕西省凤翔县,自幼聪明好学,擅长诗词歌赋,一生创作了大量的诗歌,其作品风格豪放奔放,语言优美,富有想象力,具有极高的艺术价值。李白的诗歌题材广泛,包括山水田园、历史人物、神话传说、饮酒抒怀等,他的诗歌充满了浪漫主义色彩,表现出对自由、理想和自然的热爱。他的代表作有《静夜思》、《将进酒》、《庐山谣》、《早发白帝城》等,这些作品在中国文学史上占有重要地位。李白的一生充满了传奇色彩,他曾游历过许多地方,与当时的文人墨客交往甚广,他的诗歌也深受人们的喜爱。然而,他的生活并不平稳,曾多次遭遇政治挫折,但他始终保持乐观豁达的态度。晚年,李白因病返回故乡,最终在安徽当涂去世。李白的诗歌对中国文学产生了深远影响,他的作品被后世广为传颂,成为中国古代诗歌的瑰宝。 ')

我们还可以使用提示模板来指导它的响应。 提示模板用于将原始用户输入转换为更好的 LLM 输入。

from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([    
  ("system", "你是世界级的历史人物研究人员,擅长用一句话输出回答。"),    
  ("user", "{input}")
])

现在,我们可以将它们组合成一个简单的 LLM 链:

chain = prompt | llm

我们现在可以调用它并提出相同的问题,理论上它应该输出一句介绍李白的话。

chain.invoke({"input": "请介绍一下李白?"})

输出:

AIMessage(content='李白,唐朝浪漫主义诗人,被誉为“诗仙”。 ')

模型的输出是一条消息。但是,使用字符串通常要方便得多。让我们添加一个简单的输出解析器,将聊天消息转换为字符串。

from langchain_core.output_parsers import StrOutputParser 
output_parser = StrOutputParser()

现在,我们可以将其添加到上一个链中:

chain = prompt | llm | output_parser

我们现在可以调用它并提出相同的问题。答案现在将是一个字符串(而不是 AIMessage)

输出:

李白,唐朝浪漫主义诗人,被誉为“诗仙”。 

总结

至此,我们就学会了LangChain中所谓的“Chain”的基本使用。既然是基本使用,肯定也有高级用法,甚至我们可以自己“自定义Chain”来处理我们逻辑。具体怎么使用,请关注后续文章更新。

Peace Guys

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容