Android Handler源码分析

Handler相信安卓开发者都很熟悉了,平常在开发的时候应用场景很多,但是Handler到底是如何发送消息和接收消息的呢,它内部到底做了些什么工作呢,本篇文章就Handler来分析它的源码流程

在Handler中有多个发送消息的方法,以下为几个例子:

第一个不用多说直接发送消息的,延迟时间是0

 public final boolean sendMessage(@NonNull Message msg) {
        return sendMessageDelayed(msg, 0);
    }

第二个发送带有延迟的消息,如果delayMillis 是负数则设置为0

    public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

第三个发送消息排在消息队列的头部,等待处理

    public final boolean sendMessageAtFrontOfQueue(@NonNull Message msg) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, 0);
    }

从源码可以看出来第一个和第二个方法都是调用sendMessageAtTime方法,而sendMessageAtTime方法调用的是enqueueMessage方法,所以它们调用的都是enqueueMessage方法

    private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
            long uptimeMillis) {
      这里把Handler自身设置给target
        msg.target = this;
        msg.workSourceUid = ThreadLocalWorkSource.getUid();

        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        这里queue不会为空
        return queue.enqueueMessage(msg, uptimeMillis);
    }

走到这里我们看到这个msg.target 就是当前Handler,这里之所以这样写是为了后面用于消息分发的,这里的queue不会为空,我们来看queue到底在哪里实例的

    public Handler() {
        this(null, false);
    }

    public Handler(@Nullable Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }
        实例化Looper对象
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
           实例化MessageQueue对象
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

在这里看到不仅MessageQueue在这里实例化并且Looper也是在这里实例化的,在这里有个疑问就是mQueue这样写会不会为空呢,带着这个疑问我们后面解答,我们先看Looper中的myLooper方法

    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }
  static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();

发现是从ThreadLocal静态对象里面获取的Looper对象,再看下在哪里设置的呢

    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        设置Looper
        sThreadLocal.set(new Looper(quitAllowed));
    }
  private Looper(boolean quitAllowed) {
        对象创建
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

在这里我们看下ThreadLocal是怎么设置和获取的,找到set方法和get方法

    public void set(T value) {
        获取当前线程
        Thread t = Thread.currentThread();
        获取 ThreadLocalMap 并且一个线程一个ThreadLocalMap 
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }
    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                返回的就是Looper对象
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

在这里说明一下一个线程对应一个ThreadLocalMap 一个ThreadLocalMap 对应一个key和value值,key对应的是sThreadLocal,value对应的存储的Looper对象。接着在这里发现MessageQueue是在这里实例化的,这里有个prepare方法里面设置的,那到底在哪里调用的呢。熟悉Activity启动流程源码的童鞋都知道,最终Activity启动流程操作主要是在ActivityThread里面的,并且Android程序刚开始的入口是ActivityThread的main方法,所以我们查看main方法

    public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");

        // Install selective syscall interception
        AndroidOs.install();

        // CloseGuard defaults to true and can be quite spammy.  We
        // disable it here, but selectively enable it later (via
        // StrictMode) on debug builds, but using DropBox, not logs.
        CloseGuard.setEnabled(false);

        Environment.initForCurrentUser();

        // Make sure TrustedCertificateStore looks in the right place for CA certificates
        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
        TrustedCertificateStore.setDefaultUserDirectory(configDir);

        // Call per-process mainline module initialization.
        initializeMainlineModules();

        Process.setArgV0("<pre-initialized>");
         关注此方法
        Looper.prepareMainLooper();
        .....

        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        消息循环
        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

我们看到在入口调用了Looper.prepareMainLooper方法,我们直接进入方法

    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

在这里惊奇的发现调用了prepare方法,在下面判断中保证一个线程中只能有一个Looper对象,否则抛出异常。
走到这里做个总结:

  • 在子线程创建Handler对象的时候必须先要调用Looper.prepare()方法,否则会报错

  • Looper对象的创建是在ThreadLocal存储的

  • 在主线程中创建Handler对象不需要Looper.prepare()方法,因为程序在ActivityThread入口处已经调用

  • 每个线程只能调用Looper.prepare方法一次,只能创建一个Looper对象,否则抛出异常

下面我们看消息循环和存储

从上面可以看出几乎所有的发送消息方法都会调用enqueueMessage方法,我们查看MessageQueue中的enqueueMessage方法

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
      消息是否在使用
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            判断队列是否已经退出
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
               已经退出,释放消息
                msg.recycle();
                return false;
            }
            指定消息正在使用
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                死循环遍历存储消息
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            if (needWake) {
                用于唤醒Looper.loop()的循环消息的否则就是阻塞等待
                nativeWake(mPtr);
            }
        }
        return true;
    }

这个方法主要是用来存储消息队列的,并且通过时间进行有序排序,有了消息之后就通过nativeWake方法这个方法是底层实现的,这个方法是用通过JNI实现的,即在底层通过C实现的,底层在这里就不多说了,不是本篇主要内容。在上面我们在ActivityThread中main方法中调用了Looper.loop()方法,这样这个方法就被唤醒,接着我们查看此方法到底干了啥

    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        final int thresholdOverride =
                SystemProperties.getInt("log.looper."
                        + Process.myUid() + "."
                        + Thread.currentThread().getName()
                        + ".slow", 0);

        boolean slowDeliveryDetected = false;
        死循环不断的获取队列中的消息
        for (;;) {
            关注此方法
            Message msg = queue.next(); 
            如果为空跳出循环
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
         
            final Observer observer = sObserver;
          final long traceTag = me.mTraceTag;
            long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
            if (thresholdOverride > 0) {
                slowDispatchThresholdMs = thresholdOverride;
                slowDeliveryThresholdMs = thresholdOverride;
            }
            final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
            final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);

            final boolean needStartTime = logSlowDelivery || logSlowDispatch;
            final boolean needEndTime = logSlowDispatch;

            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }

            final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            Object token = null;
            if (observer != null) {
                token = observer.messageDispatchStarting();
            }
            long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
            try {
                调用Handler dispatchMessage方法
                msg.target.dispatchMessage(msg);
                if (observer != null) {
                    observer.messageDispatched(token, msg);
                }
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } catch (Exception exception) {
                if (observer != null) {
                    observer.dispatchingThrewException(token, msg, exception);
                }
                throw exception;
            } finally {
                ThreadLocalWorkSource.restore(origWorkSource);
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
      
            回收消息,从这里就可以用回收的消息,而不用重新new Messaged对象了,这就是Message.obtain()的好处,因为会重新拿来使用
            msg.recycleUnchecked();
        }
    }

这个方法是个无限循环方法等待获取可以处理分发msg消息的,我们重点来看MessageQueue.next()方法

    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1;
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
            唤醒消息循环线程,有就唤醒,没有则等待
            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                 记录当前时间
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        设置msg的下一个为null
                        msg.next = null;
                        标记为使用
                        msg.markInUse();
                        返回
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
              如果队列需要退出,调用方法销毁队列,并返回null
                if (mQuitting) {
                    dispose();
                    return null;
                }

            下面主要是处理IdleHandler,用于空闲的时候处理不紧急事件
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
  
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            pendingIdleHandlerCount = 0;

            nextPollTimeoutMillis = 0;
        }
    }

这个方法很重要在这里主要是取出Message返回给Looper.loop()用做消息分发,现在来看Looper.loop()方法中调用的Handler dispatchMessage方法

    public void dispatchMessage(@NonNull Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

在这里如果Message 设置了callback 的话,则直接调用 message.callback.run()方法,如果有设置Handler的callback,则也进行分发,如果都没有的话,那就直接调用handleMessage(Message msg)方法。

做个总结:

  • MessageQueue中的enqueueMessage方法是用来存储消息的,把消息按照链表的结构方式进行时间排序,此时调用底层nativeWake方法唤醒循环线程发送完数据之后然后调用Looper.loop()方法

  • Looper.loop()方法中调用MessageQueue.next()取出消息,所以MessageQueue.next()方法负责进行消息出队操作,它会无限循环检查是否有到时间的消息,如果有则把他出队,如果没有则循环阻塞

  • Looper.loop()取到消息之后进行分发,然后消息回收

最后:

在这里多说几句为什么用链表结构的方式进行存储消息,而不用数组的方式呢,熟悉ArrayList源码的开发者都知道它里面其实就是以数组的方式进行存储数据的,而LinkedList是以节点的方式存储的,相当于二叉树结构的和链表结构类似,所以最终我们知道链接结构主要是增加删除效率高,而数组的方式则是查询的效率高

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容