Elasticsearch 实战(一) - 简介

  • 官腔
    Elasticsearch,分布式,高性能,高可用,可伸缩的搜索和分析系统

基本等于没说,咱们慢慢看

1 概述

百度:我们比如说想找寻任何的信息的时候,就会上百度去搜索一下,比如说找一部自己喜欢的电影,或者说找一本喜欢的书,或者找一条感兴趣的新闻(提到搜索的第一印象)
百度 != 搜索,这是不对的

垂直搜索(站内搜索)

  • 互联网的搜索:电商网站,招聘网站,新闻网站,各种app
  • IT系统的搜索:OA软件,办公自动化软件,会议管理,日程管理,项目管理,员工管理,搜索“张三”,“张三儿”,“张小三”;有个电商网站,卖家,后台管理系统,搜索“牙膏”,订单,“牙膏相关的订单”

搜索,就是在任何场景下,找寻你想要的信息,这个时候,会输入一段你要搜索的关键字,然后就期望找到这个关键字相关的有些信息


2 数据库搜索

数据都是存储在数据库里面的
很自然的,如果从技术的角度去考虑,如何实现搜索,电商网站内部的搜索功能的话,就可以考虑,去使用数据库去进行搜索。

2.1 案例 - 电商系统的搜索

  • 搜索含有牙膏的商品
  • 在数据库中商品名称字段中存储有关键字

数据库来处理的话,不考虑数据库的全文索引什么的,假如商品有 1000万 个,那么基本上就要查找 1000 万次,且每次都需要加载商品的名称字段的整段字符串,并挨个寻找。


  • 每条记录的指定字段的文本,可能会很长
    比如“商品描述”字段的长度,有长达数千个,甚至数万个字符,这个时候,每次都要对每条记录的所有文本进行扫描,懒判断说,你包不包含我指定的这个关键词(比如说“牙膏”)
  • 无法将搜索词拆分开来
    尽可能去搜索更多的符合你的期望的结果,比如输入“生化机”,就搜索不出来“生化危机”

用数据库来实现搜索,是不太靠谱的。通常来说,性能会很差的。


3 全文检索 & Lucene

3.1 全文检索

3.1.1 场景:搜索“生化机”

  • 全文检索


(有可能是手抖打错了,本来是生化危机),但是期望需要出来右侧的 4条 记录

有 4条 数据
将每条数据进行词条拆分。如“生化危机电影”拆成:生化、危机、电影 关键词(拆分结果与策略算法有关)
每个关键词将对应包含此关键词的数据 ID
搜索的时候,直接匹配这些关键词,就能拿到包含关键词的数据
这个过程就叫做全文检索。而词条拆分和词条对应的 ID 这个就是倒排索引的的基本原理

对比数据库的缺陷

数据库里的数据,共有100万条,按照之前的思路,其实就要扫描100万次,而且每次扫描,都需要匹配那个文本所有的字符,确认是否包含搜索的关键词,而且还不能将搜索词拆解开来进行检索

利用倒排索引

进行搜索的话,假设100万条数据,拆分出来的词语,假设有1000万个词语,那么在倒排索引中,就有1000万行,我们可能并不需要搜索1000万次。
很可能说,在搜索到第一次的时候,我们就可以找到这个搜索词对应的数据。
也可能是第100次,或者第1000次

3.2 lucene

就是一个jar包,里面包含了封装好的各种建立倒排索引,以及进行搜索的代码,包括各种算法

java开发的时候,引入lucene jar,然后基于lucene的API进行去进行开发就可以了
用lucene,我们就可以去将已有的数据建立索引,lucene会在本地磁盘上面,给我们组织索引的数据结构
另外的话,我们也可以用lucene提供的一些功能和API来针对磁盘上额

4 Elasticsearch的意义

我们可以使用 lucene 开发搜索服务,部署在一台机器上面,但是无法解决当数据量增大的时候出现的问题(图上右侧)。
那么 elasticsearch 就是解决这种场景的工具;

  • 自动维护数据的分布到多个节点的索引建立、检索请求分布到多个节点的执行
  • 自动维护数据的冗余副本,保证一些机器宕机了,不会丢失任何数据
  • 封装了更多的高级功能
  • 给我们提供更多高级的支持,让我们快速的开发应用,开发更加复杂的应用
  • 复杂的搜索功能,聚合分析的功能,基于地理位置的搜多(距离我当前位置 1公里 以内的烤肉店)

参考

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容

  • Solr&ElasticSearch原理及应用 一、综述 搜索 http://baike.baidu.com/it...
    楼外楼V阅读 7,271评论 1 17
  • 前言 最近项目组安排了一个任务,项目中用到了基于 Solr 的全文搜索,但是该 Solr 搜索云项目不稳定,经常查...
    printf200阅读 1,565评论 0 6
  • 前言 最近项目组安排了一个任务,项目中用到了基于 Solr 的全文搜索,但是该 Solr 搜索云项目不稳定,经常查...
    zwb_jianshu阅读 2,620评论 0 2
  • 一、 什么是 Elasticsearch 想查数据就免不了搜索,搜索就离不开搜索引擎,百度、谷歌都是一个非常庞大复...
    古佛青灯度流年阅读 1,116评论 1 3
  • 这既是一篇游记,也是一篇读后感。 在游玩舟山的同时,我把《漫游舟山群岛》一书读了一篇。发现看游记和亲身体验,各有各...
    Jeff_孙阅读 299评论 0 1