NLTK中文词性自动标注

1. 说明

 学习自然语言处理,一定会参考NLTK,主要是学习它的思路, 从设计地角度看看能做什么. 其本质就是把语言看成字符串,字符串组,字符串集,寻找其间规律.
 NLTK是多语言支持的, 但目前网上的例程几乎没有用NLTK处理中文的,其实可以做。比如标注功能, 它自身提供了带标注的中文语库(繁体语料库sinica_treebank). 下面来看看怎样通过数据训练来实现中文词性自动标注.
 可以利用它来标注中本,也可以寻找和验证一些隐性的规律.

2. 相关知识

1) 词性标注

 词汇按它们的词性(parts-of-speech,POS)分类以及相应的标注它们的过程, 词性包括:名词、动词、形容词, 副词等.

2) 中文字符的显示

 Python内部编码是unicode, 所以输出中文常常像这样"\u4eba\u5de5", 用print函数输出时, 将自动转换成本地字符集, 也可以使用encode(‘utf-8’)函数转换.

3) 数据集,训练集,评估

 有监督的机器学习一般都是把数据分成两个部分, 一部分用于训练, 一部分用于测试, 还可以通过不同分组交叉验证. Nltk提供了evaluate()函数评估标注效果.

4) 默认标注(Default Tagger)

 事先对语料库做了统计(利用nltk.FreqDist()), 出现最多的是名词.
 在这里,默认标注为名词.

5) 正则表达式标注(Regexp Tagger)

 用匹配模式分配标记给标识符.在英文处理中,常用此方式识别各种形态(时态,后缀等),中文识别中也可以使用它来识别标点,数字等.

6) 一元标注(Unigram Tagger)

 一元标注基于一个简单的统计算法: 对每个标识符分配这个独特的标识符最有可能的标记.
 在这里就是分配给具体单词,它最常出现的词性.

7) 多元标注(N-gram Tagger)

 多元标注使用训练集来确定对每个上下文哪个词性标记最有可能。上下文指当前词和它前面 n-1 个标识符的词性标记.
 在这里,就是找一些规律, 比如: XX常出现在名词之前, YY常出现在动词之后. 通过某个词以及它之前那个词的词性来判断它的词性. 这就是二元标注. 同理,可以生成三元甚至多元标注.词的距离越远影响越小, 也更占用资源, 一般二元到三元就够了.

8) 组合标注

 更精确的算法在很多时候落后于具有更广覆盖范围的算法(比如满足三元标的词可能非常少), 所以有时我们组合多个标注器,
 在这里,组合 bigram 标注器、unigram 标注器和一个默认标注器

3. 代码


    # encoding=utf-8  
      
    import nltk  
    from nltk.corpus import sinica_treebank # 带标注的中文语料库  
      
    # 用print输出本地字符格式  
    def dump_result(result):  
        for item in result:  
            print item[0],",",item[1],  
        print  
          
    # 等标注的词,以空格分词(分词问题不在此讨论)  
    raw = '讓 人工 智能 能夠 更 有效地 甄別 虛假 和 低俗 內容 並 控制 其 傳播 是 當前 業界 和 學界 要 重點 研究 的 問題'.decode('utf-8')  
    tokens = nltk.word_tokenize(raw)  
      
    sinica_treebank_tagged_sents = sinica_treebank.tagged_sents()   # 以句为单位标  
    size = int(len(sinica_treebank_tagged_sents) * 0.9)  
    train_sents = sinica_treebank_tagged_sents[:size]   # 90% 数据作为训练集  
    test_sents = sinica_treebank_tagged_sents[size:]    # 10% 数据作为测试集  
      
    t0 = nltk.DefaultTagger('Nab')  # 词性的默认值为名词  
    t1 = nltk.UnigramTagger(train_sents, backoff=t0)    # 一元标注  
    t2 = nltk.BigramTagger(train_sents, backoff=t1) # 多元(二元)标注  
      
    dump_result(t2.tag(tokens))  
    print t2.evaluate(test_sents)   # 根据带标注的文本,评估标注器的正确率  

4. 主要思想

 词性标注的主要思想是提炼最容易出现的可能性 (在不同层次: 所有词, 具体词, 词间关系),它是一套统计方法,也是分类器的一个应用.
 NLTK的词性标注只是抛砖引玉,使用同样方法,还也可以实现标注词义(一词多义的消歧), 字音(多音字)等等.
 通过它来看看自然语言的处理方法, 有了自己的工具, 也能更灵活地使用这个功能, 目前还很简陋,下面来看看怎么改进它.

5. 改进

1) 缺少训练数据

 训练数据不足, 或者一些标注本身的问题, 需要改进和增加训练数据.错误分类可以通过大量数据的校正,同时也需考虑语境,选择不同训练集.
 上例中的sinica_treebank语料库自带1万个句子, 10万左右的词,文本也比较单一,执行以上程序后可以看到, 准确率在75%左右.
 想要训练出更理想的标注器, 需要更多带标注的数据(有监督学习). 数据从哪儿来呢? 其实也简单, 可以用现有靠谱的分词工具(比如: 在线的”语言云”, 离线的”结巴”)的标注结果去训练你自己的标注器.

2) 有一些词本身就是特例, 就如同”海豚不是鱼类”

 统计归类本身无法处理, 除了统计的方案, 还可以添加一一对应的词与标注的映射表来解决此类问题.

3) 新词/不常用词

 未被训练过的词,可以用一些特殊标记加入字典,在数据积累到一定数量时总结其规律.
 N元标注再抽象一个层次是发现词性间的规律,比如"名词前是形容词的可能性比较大",借此来处理不能识别的"新词".
 也可以通过WordNet等字典查看具体词的词性.有一些词虽然很少出现, 但词义和词性比较单一. 对多义词,可以选择其最常用的词性.

4) 特殊规则

 有些专业领域会有一些特殊的习惯用法, 也可以通过它制定一些规则. 通过正则表达式标注器实现.

5) 语义, 形态…

 更深层次的语义分析

6. 参考

1) Categorizing and Tagging Words

http://www.nltk.org/book_1ed/ch05.html

2) 结巴词性标注

http://www.mamicode.com/info-detail-562618.html##

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容