原子性,可见性,有序性

转载自:
并发之可见性
并发之原子性
并发之有序性

image.png

01 可见性的阐述

可见性 的定义是:一个线程对共享变量的修改,另外一个线程能够立刻看到。

内存并不直接与Cpu打交道,而是通过高速缓存与Cpu打交道。

cpu  <——> 高速缓存  <———>  内存

通过一张图片来表示就是(多核):

image

02 原因分析

可见性问题都是由Cpu缓存不一致为并发编程带来,而其中的主要有下面三种情况:

2.1、线程交叉执行

image

2.2、重排序结合线程交叉执行

image

由图知:由于编译时改变了执行顺序,导致结果不一致;而两个线程的交叉执行又导致线程改变后的结果也不是预期值,简直雪上加霜!

2.3、共享变量更新后的值没有在工作内存及主存间及时更新

package com.itquan.service.share.resources.controller;
import java.time.LocalDateTime;
/** * @author :mmzsblog 
* @description:共享变量在线程间的可见性测试 
*/
public class VisibilityDemo {      
      // 状态标识flag    
      private static boolean flag = true;    
      public static void main(String[] args) throws InterruptedException {              
            System.out.println(LocalDateTime.now() + "主线程启动计数子线程");        
            new CountThread().start();        
            Thread.sleep(1000);        
            // 设置flag为false,使上面启动的子线程跳出while循环,结束运行            
            VisibilityDemo.flag = false;     
            System.out.println(LocalDateTime.now() + "主线程将状态标识flag被置为false了");   
   }    
  static class CountThread extends Thread {      
      @Override        
      public void run() {            
          System.out.println(LocalDateTime.now() + "计数子线程start计数");               
           int i = 0;          
          while (VisibilityDemo.flag) {              
                i++;            
          }            
        System.out.println(LocalDateTime.now() + "计数子线程end计数,运行结束:i的值是" + i);       
     }   
 }}

运行结果是:

image

从控制台的打印结果可以看出,因为主线程对flag的修改,对计数子线程没有立即可见,所以导致了计数子线程久久不能跳出while循环,结束子线程。

03 如何解决线程间不可见性

为了保证线程间可见性我们一般有3种选择:

3.1、volatile:只保证可见性

volatile关键字能保证可见性,但也只能保证可见性,在此处就能保证flag的修改能立即被计数子线程获取到。

此时纠正上面例子出现的问题,只需在定义全局变量的时候加上volatile关键字

    // 状态标识flag    private static volatile boolean flag = true;

3.2、Atomic相关类:保证可见性和原子性

将标识状态flag在定义的时候使用Atomic相关类来进行定义的话,就能很好的保证flag属性的可见性以及原子性。

此时纠正上面例子出现的问题,只需在定义全局变量的时候将变量定义成Atomic相关类

    // 状态标识flag    private static AtomicBoolean flag = new AtomicBoolean(true);

不过值得注意的一点是,此时原子类相关的方法设置新值和得到值的放的是有点变化,如下:

    // 设置flag的值    VisibilityDemo.flag.set(false);       
   // 获取flag的值    VisibilityDemo.flag.get()

3.3、Lock: 保证可见性和原子性

此处我们使用的是Java常见的synchronized关键字。

此时纠正上面例子出现的问题,只需在为计数操作i++添加synchronized关键字修饰

    synchronized (this) {        i++;    }

通过上面三种方式,得到类似如下的期望结果:

image

然而,接下来阿粉我要对其中的volatilesynchronized关键字做一番较为详细的解释。

04 可见性-volatile

Java内存模型对volatile关键字定义了一些特殊的访问规则,当一个变量被volatile修饰后,它将具备两种特性,或者说volatile具有下列两层语义:

  • 第一、保证了不同线程对这个变量进行读取时的可见性。即一个线程修改了某个变量的值, 这个新值对其他线程来说是立即可见的。(volatile解决了线程间共享变量的可见性问题)。
  • 第二、禁止进行指令重排序, 阻止编译器对代码的优化。

针对第一点,volatile保证了不同线程对这个变量进行读取时的可见性,具体表现为:

  • 1:使用 volatile 关键字会强制将在某个线程中修改的共享变量的值立即写入主内存。
  • 2:使用 volatile 关键字的话, 当线程 2 进行修改时, 会导致线程 1 的工作内存中变量的缓存行无效(反映到硬件层的话, 就是 CPU 的 L1或者 L2 缓存中对应的缓存行无效);

附一张CPU缓存模型图:

image
  • 3:由于线程 1 的工作内存中变量的缓存行无效,所以线程1再次读取变量的值时会去主存读取。基于这一点,所以我们经常会看到文章中或者书本中会说volatile 能够保证可见性。

综上所述:就是用volatile修饰的变量,对这个变量的读写,不能使用 CPU 缓存,必须从内存中读取或者写入。

使用volatile无法保障线程安全,那么volatile的作用是什么呢?

其中之一:(对状态量进行标记,保证其它线程看到的状态量是最新值)

image

volatile关键字是Java虚拟机提供的最轻量级的同步机制,很多人由于对它理解不够(其实这里你想理解透的话可以看看happens-before原则),而往往更愿意使用synchronized来做同步。所以接下来阿粉我再说说synchronized关键字。

05 可见性synchronized

image

5.1、作用域

synchronized关键字的作用域有二种:

  • 1)是某个对象实例内,synchronized aMethod(){}可以防止多个线程同时访问这个对象的synchronized方法。

    如果一个对象有多个synchronized方法,只要一个线程访问了其中的一个synchronized方法,其它线程不能同时访问这个对象中任何一个synchronized方法。

    这时,不同的对象实例的synchronized方法是不相干扰的。也就是说,其它线程照样可以同时访问相同类的另一个对象实例中的synchronized方法。

    因为当修饰非静态方法的时候,锁定的是当前实例对象。

  • 2)是某个类的范围,synchronized static aStaticMethod{}防止多个线程同时访问这个类中的synchronized static 方法。它可以对类的所有对象实例起作用。

    因为当修饰静态方法的时候,锁定的是当前类的 Class 对象。

5.2、可用于方法中的某个区块中

除了方法前用synchronized关键字,synchronized关键字还可以用于方法中的某个区块中,表示只对这个区块的资源实行互斥访问。

用法是:

synchronized(this){    /*区块*/}

它的作用域是当前对象;

5.3、不能继承

synchronized关键字是不能继承的,也就是说,基类的方法

synchronized f(){    // 具体操作}

在继承类中并不自动是

synchronized f(){    // 具体操作}

而是变成了

f(){    // 具体操作}

继承类需要你显式的指定它的某个方法为synchronized方法;

综上3点所述:synchronized关键字主要有以下这3种用法:

  • 修饰实例方法:作用于当前实例加锁,进入同步代码前要获得当前实例的锁
  • 修饰静态方法:作用于当前类对象加锁,进入同步代码前要获得当前类对象的锁
  • 修饰代码块:指定加锁对象,对给定对象加锁,进入同步代码块前要获得给定对象的锁

这三种用法就基本保证了共享变量在读取的时候,读取到的是最新的值。

5.4、JVM关于synchronized的两条规定:

  • 线程解锁前,必须把共享变量的最新值刷新到主内存

  • 线程加锁时,将清空工作内存中共享变量的值,从而是使用共享变量时,需要从主内存中重新读取最新的值(注意:加锁与解锁是同一把锁)

从上面的这两条规则也可以看出,这种方式保证了内存中的共享变量一定是最新值。

但我们在使用synchronized保证可见性的时候也要注意以下几点:

  • A.无论synchronized关键字加在方法上还是对象上,它取得的锁都是对象;而不是把一段代码或函数当作锁――而且同步方法很可能还会被其他线程的对象访问。
  • B.每个对象只有一个锁(lock)与之相关联。Java 编译器会在 synchronized 修饰的方法或代码块前后自动加上加锁 lock() 和解锁 unlock(),这样做的好处就是加锁 lock() 和解锁 unlock() 一定是成对出现的,毕竟忘记解锁 unlock() 可是个致命的 Bug(意味着其他线程只能死等下去了)。
  • C.实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容