国内外数据管理模型简介

1、数据管理发展史


        从数据管理到数据治理到数据资产管理,从全球到国内,各种新概念不断提出并被加以实践改良,提升了政府、企事业单位及群众对大数据资产管理的意识,同时也促进了大数据产业不断的深入发展。


数据管理的概念从80年代提出到现在已经接近40年了,数据治理的提法也有近20年,而数据资产管理的提出基本是最近5年的事情,中国数据资产管理峰会对数据资产管理定义为是对数据管理、数据治理及数据资产化的管理过程。

2、国外数据管理模型简介


      20世纪80年代后期,数据仓库概念开始形成,这也是数据管理理论的萌芽。随着数据仓库应用落地和展开,在2000年左右数据治理的相关理念也逐步形成。2000年前后,H.Watson探讨了“数据仓库治理”在Blue Cross和Blue Shield of North Carolina两家公司的最佳实践,被国内学者认为拉开了“数据治理”在企业管理中的大幕。

2004年,国际数据治理协会DGI就首次发布了DGI数据治理框架,从这个框架模型初步提出了RPP(人员/流程/规则)框架。

但是,这个框架中没有对数据治理的具体工作内容给予细化或明确说明。

DGI数据治理框架偏重于对实践操作的培训,通过包含的10个组件回答了数据治理why-what-who-when-how这几个经典问题。DGI按照三个层次描绘了数据治理框架,在规则条例层,前6个组件分别为愿景使命、重点区域(目标、评估标准、资金战略)、数据规则与定义、决策权、职责和控制;其中愿景使命回答了为什么(why)进行数据治理的问题,其他组件负责规定数据治理的具体规则(what)。在组织架构层面,7-9组件将相关人员分为数据利益相关者、数据治理办公室和数据专员,对应的是框架中的人员职责(who)。最后一个组件是数据治理过程(how),同时设定了数据治理项目的典型时间节点安排(when)。

2006年,国际数据管理协会(DAMA)发布了数据管理框架,并参考了PMBOK的架构编写了数据管理指南(DMBOK)

经过多次迭代,2008年3月,国际数据管理协会发布的最新版DMBOK。

DAMA认为共享决策制定是数据治理的标志性特征,有效的数据治理需要跨部门、跨系统进行工作。业务部门和技术部门需要拥有整合的数据视角,在制定决策时共同承担责任。数据治理的实际工作中,某些决策会偏重于业务层面(如商业模型、数据治理模型、研发投资等),另外一些决策则会偏重于技术层面(如数据架构、元数据、数据仓库/商务智能架构等),这些决策的制定均需要跨部门提供信息输入和指导。此外,DAMA数据治理过程还包含了16项活动,具体为9项数据管理规划活动,以及7项数据管理监督和控制活动。

2010年,IBM发布了《数据治理统一流程》一书,描述了企业数据能力成熟度评价模型。

IBM提出数据治理的要素模型,认为数据风险与合规、价值创造等业务目标或成果是数据治理的核心关键命题,并且影响这些目标的达成需要组织结构和认知度、政策、数据相关责任者三个促成要素。在三个促成因素以外,必须关注数据治理三个核心要素,分别是数据质量管理、信息生命周期管理、信息安全和隐私。要素模型中还有数据治理三个支撑要素,数据架构、分类与元数据、审计日志和报告。

IBM数据治理统一过程提供14个实施步骤(其中4个为可选步骤),同时提供软件工具解决实际治理问题。前面10个步骤是数据治理项目的必备组件,另外还需要选择至少一个可选步骤来切入实施路径。可选的方向包括主数据治理、数据分析治理、数据安全隐私治理和信息生命周期治理。

2014年,EDM发布了数据管理能力成熟度模型( Data management Capability Assessment Model )。

企业数据管理协会(EDM Council)是北美地区的一个主要面向金融保险行业数据管理的公益性组织,在数据内容标准制定、数据管理最佳实践等方面有丰富的经验,是业界的倡导者和领导者。组织内部的成员大部分都是数据管理行业和金融保险行业的企业。在该模型中,EDM将数据管理划分为八大职能域:

金融是监管驱动的行业,各金融公司都会面临大量的监管需求,例如巴塞尔协议、各国自身的监管需求等,所以DCAM在金融业具有很大的影响力,在DCAM的推广过程中,EDM也在尝试把DCAM和监管需求进行映射,从而可以帮助金融企业更好地满足监管需求。

2014年,CMMI协会发布了数据管理成熟度模型,将数据管理工作分为六个维度:


CMMI DMM 数据管理能力成熟度模型  
成熟度评估等级

3、国内数据管理模型


《GB/36073-2018数据管理能力成熟度评估模型》

 2018年3月29日,“2018全国大数据标准化工作会议暨全国信标委大数据标准工作组第五次全会”在北京国际会议中心召开。会议上《大数据标准化白皮书》(2018)进行了重磅发布,并且针对国内首个数据管理领域的国家标准《数据管理能力成熟度评估模型》全国首批试点机构进行签约仪式。

    《GB/36073-2018数据管理能力成熟度评估模型》是我国数据管理领域首个正式发布的国家标准。用来帮助和指导相关组织单位定位数据管理等级、加强数据管理能力,提升数据资产价值,同时对数据管理从业人员进行培训,提升数据管理和应用的技能,规范和指导大数据整体行业的高效、有序发展。该标准在研制阶段,分别针对金融、通讯、能源、传媒等行业进行了大量的试验验证;为了验证科学合理性,还在全国范围内进行数据管理能力调研并形成《数据管理能力成熟度调研报告》,为各地方主管部门、行业主管机构以及企业提供了高质量的数据辅佐及参考。


DCMM数据管理能力成熟度评估模型定义了数据战略、数据治理、数据架构、数据应用、数据安全、数据质量、数据标准和数据生存周期8个核心能力域及28个过程域。
8个核心能力域及28个过程域


成熟度评估等级划分

4、国内外管理模型差异


        数据管理能力成熟度模型(data management capability maturity model,DCMM)与以上2个模型最大的差异在于它既吸收了行业公认的部分,又结合了国内数据发展的现实情况,增添了“数据标准”“数据安全”和“数据应用”3个独立的能力项。

数据标准

        国外的数据管理相关工作中对于数据标准的强调非常少, DAMA数据管理知识体系指南(DAMA guide to the data management body of knowledge,DMBOK)、DMM或者DCAM等文件中都没有关于数据标准的内容,而在国内恰恰相反,在国内很多行业,特别是银行、政府等行业在开展数据治理的过程中,往往会首先制定各自的数据标准。2017年是我国的标准化大年,面对诸多的数据孤岛,数据开放、共享、融合是当前要务,强调数据标准就是强调夯实数据的基础。

数据安全

        随着数据在单位之间的流动性越来越高,特别是《中华人民共和国网络安全法》的发布和执行,数据安全和隐私的保护也引起了大部分单位的重视,国家也在制定数据安全相关的标准,为此,DCMM也把数据安全作为数据能力的一个重要维度,意图通过评估来提升各单位的数据安全能力状况。

 数据应用

        数据应用是数据资产价值体现的重要方式,也是数据管理的重要目标,国内很多单位也把数据管理和数据应用放在统一的团队中进行开展,同时也可以通过数据应用来保证数据管理工作的针对性,更利于体现数据管理工作的价值。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容