Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note:
You must not modify the array (assume the array is read only).
You must use only constant, O(1)
extra space.
Your runtime complexity should be less than O(n2)
.
There is only one duplicate number in the array, but it could be repeated more than once.
T(n) = 2T(n/2) + O(n) -> time O(nlogn)
T(n) = T(n/2) + O(n) -> time O(n)
// time O(nlogn)
public class Solution {
public int findDuplicate(int[] nums) {
int n = nums.length - 1;
int low = 1;
int high = n;
int mid;
while(low < high){
mid = (low + high) / 2;
int count = 0;
for(int num : nums){
if(num <= mid) {
count++;
}
}
// if count > mid, the duplicate number <= mid
if(count > mid) {
high=mid;
}
else {
low=mid+1;
}
}
return low;
}
}
The main idea is the same with problem Linked List Cycle II
public class Solution {
public int findDuplicate(int[] nums) {
if (nums.length > 1)
{
int slow = nums[0];
int fast = nums[nums[0]];
while (slow != fast)
{
slow = nums[slow];
fast = nums[nums[fast]];
}
fast = 0;
while (fast != slow)
{
fast = nums[fast];
slow = nums[slow];
}
return slow;
}
return -1;
}
}