R语言中apply函数家族

R语言提供了批量处理函数,可以循环遍历某个集合内的所有或部分元素,以简化操作。

这些函数底层是通过C来实现的,所以效率也比手工遍历来的高效。
批量处理函数有很重要的apply族函数:lapply sapply apply tapply mapply。apply族函数是高效能计算的运算向量化(Vectorization)实现方法之一,比起传统的for,while常常能获得更好的性能。
apply : 用于遍历数组中的行或列,并且使用指定函数来对其元素进行处理。
lapply : 遍历列表向量内的每个元素,并且使用指定函数来对其元素进行处理。返回列表向量。
sapply : 与lapply基本相同,只是对返回结果进行了简化,返回的是普通的向量。
mapply: 支持传入两个以上的列表。

tapply: 接入参数INDEX,对数据分组进行运算,就和SQL中的by group一样。

(1)行或列遍历操作函数apply

apply(X, MARGIN, FUN, ...)

参数:

   X: an array, including a matrix.

MARGIN: 1:行操作; 2:列操作

FUN:函数名

用apply可以很方便地按行列求和/平均,其结果与colMeans,colSums,rowMeans,rowSums是一样的。

举例如下:

a<-matrix(1:12,c(3,4))
a
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
apply(a,1,sum)
[1] 22 26 30
apply(a,2,sum)
[1] 6 15 24 33
apply(a,1,function(x) sum(x)+2)
[1] 24 28 32
apply(a,1,function(x) x^2)
[,1] [,2] [,3]
[1,] 1 4 9
[2,] 16 25 36
[3,] 49 64 81
[4,] 100 121 144

(2)列表(list)遍历函数lapply

lapply(list, function, ...)
特点:对每列进行操作,非常适合数据框;输入的数据必须是list型。

a<-matrix(1:12,c(3,4))
a
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
a.df<-data.frame(a)
a
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
is.list(a.df)
[1] TRUE
str(a.df)
'data.frame': 3 obs. of 4 variables:
X1: int 1 2 3 X2: int 4 5 6
X3: int 7 8 9 X4: int 10 11 12
lapply(a.df, function(x) x+3)
X1 [1] 4 5 6X2
[1] 7 8 9
X3 [1] 10 11 12X4
[1] 13 14 15
lapply(a.df, function(x) sum(x)+3)
X1 [1] 9X2
[1] 18
X3 [1] 27X4
[1] 36
y<-lapply(a.df, function(x) sum(x)+3)
is.list(y)
[1] TRUE
names(y)
[1] "X1" "X2" "X3" "X4"
y
X1 [1] 9X2
[1] 18
X3 [1] 27X4
[1] 36
y[1]
X1 [1] 9 y[[1]] [1] 9 yX1
[1] 9

(3)sapply

sapply(list, function, ..., simplify)
simplify=F:返回值的类型是list,此时与lapply完全相同
simplify=T(默认值):返回值的类型由计算结果定,如果函数返回值长度为1,则sapply将list简化为vector;
如果返回的列表中每个元素的长度都大于1且长度相同,那么sapply将其简化位一个矩阵

yy<-sapply(a.df, function(x) x^2)
yy
X1 X2 X3 X4
[1,] 1 16 49 100
[2,] 4 25 64 121
[3,] 9 36 81 144
str(yy)
num [1:3, 1:4] 1 4 9 16 25 36 49 64 81 100 ...

  • attr(*, "dimnames")=List of 2
    ..: NULL .. : chr [1:4] "X1" "X2" "X3" "X4"

str(y)
List of 4
X1: num 9 X2: num 18
X3: num 27 X4: num 36

yy<-sapply(a.df, function(x,y) x^2+y, y=3)
yy
X1 X2 X3 X4
[1,] 4 19 52 103
[2,] 7 28 67 124
[3,] 12 39 84 147> y1<-sapply(a.df, sum)
y1
X1 X2 X3 X4
6 15 24 33
str(y1)
Named int [1:4] 6 15 24 33

  • attr(*, "names")= chr [1:4] "X1" "X2" "X3" "X4"

y1<-sapply(a.df, sum,simplify=F)
y1
$X1
[1] 6

$X2
[1] 15

$X3
[1] 24

$X4
[1] 33

str(y1)
List of 4
X1: int 6 X2: int 15
X3: int 24 X4: int 33

(4)mapply:mapply是sapply的多变量版本(multivariate sapply),Apply a Function to Multiple List or Vector Arguments

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)

mapply(function(x,y) x^y, c(1:5), c(1:5))
[1] 1 4 27 256 3125
a<-matrix(1:12,c(3,4))
a
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
mapply(sum, a[,1],a[,3],a[,4])
[1] 18 21 24

mapply(function(x,y,z) x^2+y+z, a[,1],a[,3],a[,4])
[1] 18 23 30

(5) tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

x是需要处理的向量,INDEX是因子(因子列表),FUN是需要执行的函数,simplify指是否简化输入结果(考虑sapply对于lapply的简化)

补充个因子函数gl,它可以很方便的产生因子,在方差分析中经常会用到

gl(3,5) 3是因子水平数,5是重复次数
[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Levels: 1 2 3
gl(3,1,15) 15是结果的总长度
[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Levels: 1 2 3

df <- data.frame(year=kronecker(2001:2003, rep(1,4)), loc=c('beijing','beijing','shanghai','shanghai'), type=rep(c('A','B'),6), sale=rep(1:12))
df
year loc type sale
1 2001 beijing A 1
2 2001 beijing B 2
3 2001 shanghai A 3
4 2001 shanghai B 4
5 2002 beijing A 5
6 2002 beijing B 6
7 2002 shanghai A 7
8 2002 shanghai B 8
9 2003 beijing A 9
10 2003 beijing B 10
11 2003 shanghai A 11
12 2003 shanghai B 12
tapply(dfsale,df[,c('year','loc')],sum) loc year beijing shanghai 2001 3 7 2002 11 15 2003 19 23 tapply(dfsale,df[,c('type','loc')],sum)
loc
type beijing shanghai
A 15 21
B 18 24

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352