约瑟夫环问题

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。

http://blog.csdn.net/haoni123321/article/details/7178748

利用数学推导,下面是推导的过程:

(1)第一个被删除的数为 (m - 1) % n。

(2)假设第二轮的开始数字为k,那么这n - 1个数构成的约瑟夫环为k, k + 1, k + 2, k +3, .....,k - 3, k - 2。做一个简单的映射。

k         ----->  0
k+1    ------> 1
k+2    ------> 2
...
k-2    ------>  n-2

这是一个n -1个人的问题,如果能从n - 1个人问题的解推出 n 个人问题的解,从而得到一个递推公式,那么问题就解决了。假如我们已经知道了n -1个人时,最后胜利者的编号为x,利用映射关系逆推,就可以得出n个人时,胜利者的编号为 (x + k) % n。其中k等于m % n。代入(x + k) % n  <=>  (x + (m % n))%n <=> (x%n + (m%n)%n)%n <=> (x%n+m%n)%n <=> (x+m)%n

(3)第二个被删除的数为(m - 1) % (n - 1)。

(4)假设第三轮的开始数字为o,那么这n - 2个数构成的约瑟夫环为o, o + 1, o + 2,......o - 3, o - 2.。继续做映射。

o         ----->  0
o+1    ------> 1
o+2    ------> 2
...
o-2     ------>  n-3

这是一个n - 2个人的问题。假设最后的胜利者为y,那么n -1个人时,胜利者为 (y + o) % (n -1 ),其中o等于m % (n -1 )。代入可得 (y+m) % (n-1)

要得到n - 1个人问题的解,只需得到n - 2个人问题的解,倒推下去。只有一个人时,胜利者就是编号0。下面给出递推式:

f [1] = 0;
f [ i ] = ( f [i -1] + m) % i; (i>1)

有了递推公式,实现就非常简单了:

这个算法的时间复杂度为O(n),空间复杂度为常数。相对于模拟算法已经有了很大的提高。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执行效率。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,383评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,522评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,852评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,621评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,741评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,929评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,076评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,803评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,265评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,582评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,716评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,395评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,039评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,027评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,488评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,612评论 2 350

推荐阅读更多精彩内容

  • 好久没有看有关算法的问题了,今天废了不少劲,再感叹一句:要想学好算法就要常练习,没什么捷径可走。废话不多说,如下:...
    时间已静止阅读 6,900评论 0 11
  • 参考文章 约瑟夫环之二(用递归的思想解决Josephus问题) 解释 解法 初始情况: 0, 1, 2 ........
    Mjolnir1107阅读 1,003评论 0 1
  • 下午和朋友聊天的时候,有朋友提到了约瑟夫环问题。你和另外 n-1 个人围成一个圈,按 1,2,...,n 依次编号...
    song4阅读 20,152评论 4 11
  • 听了一首《我的一个道姑朋友》,脑中浮现的就是这个画面,于是把它画了出来。 我觉得我和这道姑很像啊,期待越来越渺茫,...
    Drosha阅读 218评论 0 0
  • 考研成绩近日出,几人欢喜几人愁?刚刚过去的周三,对于很多人来说是一个很平常的日子,开学,返校,准备迎接新的一个学期...
    海龟先生的小木屋阅读 664评论 0 7