##[宽表]解耦宽表体系

一位阿里人对数据模型建设的几点思考与总结 - nisjlvhudy的专栏 - 博客频道 - CSDN.NET
http://blog.csdn.net/nisjlvhudy/article/details/47758749
数据平台在宽表设计中强调高内聚、低耦合的理念,在物理实现中,将业务关系大,源系统影响差异小的进行整合;业务关系小,源系统影响差异大的进行分而置之。

目前阿里巴巴数据仓库IDL层普遍采用了维度建模的思想,我们俗称的宽表也是维度建模思想的一个物理化方法。关于事实表,在kimball维度建模理论中就定义了事实表有三种类型:“We compare thethree fundamental types of fact tables: transaction, periodic snapshot, andaccumulating snapshot.”。事务型事实表(transaction)的典型代表就是我的浏览宽表;周期性快照(periodic snapshot)事实表的典型代表就是会员、offer静态信息表;而累计型快照的典型代表就是会员宽表中的各种行为统计表。


解耦宽表体系 - nisjlvhudy的专栏 - 博客频道 - CSDN.NET
http://blog.csdn.net/nisjlvhudy/article/details/7337643

数据仓库应用中,宽表模型以结构简单,模型容易理解,数据访问效率等优势,被业界广泛采用。所谓宽表就是,基于某个实体分析对象而建立的一个逻辑数据体系,由实体的维度、描述信息、以及基于这个实体一系列度量组成。它是一个逻辑的概念,在物理实现中不可能就针对一个实体对象建立一个大宽表。因为这样,对于,刷新效率,容错能力,扩展能力都是一个很大的挑战,如何设计和组织宽表的体系结构呢?

其实,我们回到软件设计的基本思想-高内聚,低耦合。我们要从在业务、ETL刷新、指标属性、数据来源等角度,让高度内聚的属性、描述、度量放在一个表中。基本可以从两个维度矩阵进行切割:

第一:按实体属性可能涉及的业务范围进行划分

第二:按业务指标的历史周期属性进行划分,在历史周期上我们可以分为以下几类:

1、当前用户的基本属性和维度,数据相对静态,修改较少。统计的集合包括所有实体对象。

2、用户在统计日发生的行为度量指标。这类数据可以根据行为的增量数据就是,统计集合仅仅是当前统计日发生过行为的实体对象。

3、用户在最近一个周期内的度量指标累计,它由统计日发生的行为度量指标在历史上聚合而成。可以根据业务需要可以就是自然月,自然周。或是最近周、最近月移动聚合数据。它统计的集合是最近一段时间内发生过行为的实体对象。

4、根据用户历史行为而衍生出的度量维度以及用户当前存量类指标(比如余额,总的产品数,当前总的帐户数)比如第一行为的时间,最后一次行为的时间,统计的集合包括所有发生过一次行为的实体对象。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容