java双检查锁的思考

在java程序中,有时候可能需要推迟一些高开销的对象初始化操作,并且只有在使用这些对象时才进行初始化。此时程序员可能会采用延迟初始化,这时候就有了创建单例的模式。

非线程安全的延迟初始化
public class SingletonDemo {
    private static SingletonDemo singletonDemo;
    public static SingletonDemo getInstance(){
        if(singletonDemo == null){                      //1行
            singletonDemo = new SingletonDemo();        //2行
        }
        return singletonDemo;
    }
}

非线程安全的单例加载会导致在高并发下,A线程执行到2行时,还没有创建成功,B线程执行到1时发现singleton == null,就进来创建,导致了对象的重复创建。而且在重排序情况下,可能导致A线程创建对象还没成功,B就引用了一个空对象,这个下面讲解

线程安全的延迟初始化
public class SingletonDemo {
    private static SingletonDemo singletonDemo;
    public synchronized static SingletonDemo getInstance(){
        if(singletonDemo == null){                      //1行
            singletonDemo = new SingletonDemo();        //2行
        }
        return singletonDemo;
    }
}

线程安全的单例模式解决了对象重复创建的问题,但是在高并发下,频繁调用getInstance()方法都需要加锁,导致了性能的下降。

双重检查锁定
public class SingletonDemo {
    private static SingletonDemo singletonDemo;
    public static SingletonDemo getInstance(){
        if(singletonDemo == null){                          //4.第一次检查
            synchronized (SingletonDemo.class){             //5.加锁
                if(singletonDemo == null){                  //6.第二次检查
                    singletonDemo = new SingletonDemo();    //7.new对象
                }
            }
        }
        return singletonDemo;
    }
}

双重检查锁定解决了:

  • 在多个线程试图在同一时间创建对象时,会通过加锁来保证只有一个线程能创建对象
  • 在对象创建好之后,执行getInstance()将不需要获取锁,直接返回已创建好的对象,保证了性能

但是

上面的双重检查锁定还是会存在问题:
在线程执行到第4行代码读取到instance不为null时,instance引用的对象有可能还没有完成初始化。

问题的根源

前面的双重检查锁定示例代码的第7行(singletonDemo = new SingletonDemo();)创建一个对象。这一行代码可以分解为如下的三行伪代码

memory = allocate();   //1:分配对象的内存空间
ctorInstance(memory);  //2:初始化对象
instance = memory;     //3:设置instance指向刚分配的内存地址

上面三行伪代码中的2和3之间,可能会被重排序,变成

memory = allocate();   //1:分配对象的内存空间
instance = memory;     //3:设置instance指向刚分配的内存地址
                       //注意,此时对象还没有被初始化!
ctorInstance(memory);  //2:初始化对象

所以执行的顺序可能是:

时间 线程A 线程B
t1 A1:分配对象的内存空间
t2 A3:设置instance指向内存空间
t3 B1:判断instance是否为空
t4 B2:由于instance不为null,线程B将访问instance引用的对象
t5 A2:初始化对象
t6 A4:访问instance引用的对象

这里A2和A3虽然重排序了,但java内存模型的intra-thread semantics将确保A2一定会排在A4前面执行。因此线程A的intra-thread semantics没有改变。但A2和A3的重排序,将导致线程B在B1处判断出instance不为空,线程B接下来将访问instance引用的对象。此时,线程B将会访问到一个还未初始化的对象

基于volatile的双重检查锁定的解决方案(把instance声明为volatile型)
public class SingletonDemo {
    private static volatile SingletonDemo singletonDemo;
    public static SingletonDemo getInstance(){
        if(singletonDemo == null){                          //4.第一次检查
            synchronized (SingletonDemo.class){             //5.加锁
                if(singletonDemo == null){                  //6.第二次检查
                    singletonDemo = new SingletonDemo();    //7.new对象
                }
            }
        }
        return singletonDemo;
    }
}

volatite保证了多线程环境下行伪代码中的2和3之间的重排序被禁止。
(不懂volatite可以看Java多线程干货系列—(四)volatile关键字)

基于类初始化的解决方案
public class InstanceFactory {
    private static class InstanceHolder {
        public static Instance instance = new Instance();
    }

    public static Instance getInstance() {
        return InstanceHolder.instance ;  //这里将导致InstanceHolder类被初始化
    }
}
基于CAS的单例模式
private static AtomicReference<SingletonDemo> singletonDemoAtomicReference = new AtomicReference<SingletonDemo>();
    public static SingletonDemo getInstanceByCAS(){
        for(;;){
            SingletonDemo singletonDemo = singletonDemoAtomicReference.get();
            if(singletonDemo != null){
                return singletonDemo;
            }
            singletonDemo = new SingletonDemo();
            if(singletonDemoAtomicReference.compareAndSet(null,singletonDemo)){
                return singletonDemo;
            }
        }
    }

用CAS的好处在于不需要使用传统的锁机制来保证线程安全,CAS是一种基于忙等待的算法,依赖底层硬件的实现,相对于锁它没有线程切换和阻塞的额外消耗,可以支持较大的并行度。CAS的一个重要缺点在于如果忙等待一直执行不成功(一直在死循环中),会对CPU造成较大的执行开销。

参考

https://blog.csdn.net/li295214001/article/details/48135939/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,509评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,806评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,875评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,441评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,488评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,365评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,190评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,062评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,500评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,706评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,834评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,559评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,167评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,779评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,912评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,958评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,779评论 2 354

推荐阅读更多精彩内容