python学习第三天

1.匿名函数

  1. 结构:
    lambda x1,x2...xn:表达式
  2. 参数:可以是无限多个,但表达式只有一个
sum_sum = lambda x1, x2: x1 + x2
print(sum_sum(2, 3))
name_info_list = [
    ('张三', 4500),
    ('李四', 9900),
    ('王五', 2000),
    ('赵六', 5500),
]
name_info_list.sort(key=lambda x: x[1], reverse=True)
print('排序后:', name_info_list)
stu_info = [
    {"name": 'zs', "age": '18'},
    {"name": 'ls', "age": '19'},
    {"name": 'ww', "age": '20'},
    {"name": 'tq', "age": '21'},
]
stu_info.sort(key=lambda i: i['age'], reverse=True)
print('排序后:', stu_info)
image.png

2.列表推导式、列表解析和字典解析

  1. 列表推导式:
    [表达式 for 临时变量 in 可迭代对象 可追加条件]
li = []
for i in range(10):
    li.append(i)
print(li)
# 使用列表推导式
# [表达式 for 临时变量 in 可迭代对象 可追加条件]
print([i for i in range(10)])
image.png
  1. 列表解析
# 筛选出列表中所有偶数
li1 = []
for i in range(10):
    if i % 2 == 0:
        li1.append(i)
print(li1)
# 使用列表解析测试
print([i for i in range(10) if i % 2 == 0])
# 筛选出列表中大于0的数
from random import randint
num_list = [randint(-10, 10) for _ in range(10)]
print(num_list)
print([i for i in num_list if i > 0])
image.png
  1. 字典解析
# 生成4个学生成绩
from random import randint
stu_grades = {'stu{}'.format(i): randint(50, 90) for i in range(1, 5)}
print(stu_grades)
# 筛选大于60分的学生
print({k: v for k, v in stu_grades.items() if v > 60})
image.png

3.matplotlib 绘图

  1. 导入
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
import numpy as np
  1. 使用100个点绘制[0, 2π]正余弦曲线图
    linspace 左闭右闭区间的等差数列
x = np.linspace(0, 2*np.pi, num=100)
print(x)
# 正弦余弦在同一坐标
y = np.sin(x)
cosy = np.cos(x)
plt.plot(x, y, color='g', linestyle='--', label='sin(x)')
plt.plot(x, cosy, color='r', label='cos(x)')
plt.xlabel('时间(s)')
plt.ylabel('电压(v)')
plt.title('欢迎来到python世界')
# 图例
plt.legend()
plt.show()
image.png
  1. 柱状图
import string
from random import randint
print(string.ascii_uppercase[0:6])
# ['A', 'B', 'C'...]
x = ['口红{}'.format(x) for x in string.ascii_uppercase[0:5]]
y = [randint(200, 500) for _ in range(5)]
print(x)
print(y)
plt.xlabel('口红品牌')
plt.ylabel('价格(元)')
plt.bar(x, y)
plt.show()
image.png
  1. 饼图
from random import randint
import string
counts = [randint(3500, 9000) for _ in range(9)]
labels = ['员工{}'.format(x) for x in string.ascii_lowercase[0:9]]
# 距离圆心点距离
explode = [0.1, 0, 0, 0, 0, 0, 0, 0, 0]
colors = ['red', 'purple', 'blue', 'yellow', 'gray', 'green']
plt.pie(counts, explode=explode, shadow=True, labels=labels, autopct='%1.lf%%', 
colors=colors)
plt.legend(loc=2)
plt.axis('equal')
plt.show()
image.png
  1. 散点图
    均值为0 标准差为1的正态分布数据
x = np.random.normal(0, 1, 1000000)
y = np.random.normal(0, 1, 1000000)
# alpha 透明度
plt.scatter(x, y, alpha=0.1)
plt.show()
image.png

4.三国TOP10人物分析

import jieba
from wordcloud import WordCloud
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
import string
# 1.读取小说
with open('./novel/threekingdom.txt', 'r', encoding='utf-8') as f:
    words = f.read()
    counts = {}
    excludes = {"将军", "却说", "丞相", "二人", "不可", "荆州", "不能", "如此", "商议",
                "如何", "主公", "军士", "军马", "左右", "次日", "引兵", "大喜", "天下",
                "东吴", "于是", "今日", "不敢", "魏兵", "陛下", "都督", "人马", "不知",
                "孔明曰", "玄德曰", "刘备", "云长"}
    # 2.分词
    words_list = jieba.lcut(words)
    # print(words_list)
    for word in words_list:
        if len(word) <= 1:
            continue
        else:
            # 更新字典中的值
            # counts[word] = counts[word] + 1
            # 字典.get(k) 如果字典中没有这个键 返回none
            counts[word] = counts.get(word, 0) + 1
    print(len(counts))
    # 3.词语过滤,删除无关词、重复词
    counts['孔明'] = counts['孔明'] + counts['孔明曰']
    counts['玄德'] = counts['玄德'] + counts['玄德曰']
    counts['玄德'] = counts['玄德'] + counts['玄德曰'] + counts['刘备']
    counts['关公'] = counts['关公'] + counts['云长']
    for word in excludes:
        del counts[word]
    # 4.排序
    items = list(counts.items())
    print(items)
    items.sort(key=lambda x: x[1], reverse=True)
    li = []  # ['孔明',...'曹操',...]
    count1 = []
    count2 = []
    for i in range(10):
        # 序列解包
        role, count = items[i]
        print(role, count)
        count1.append(role)
        count2.append(count)
        # _是告诉循环里面不需要使用临时变量
        for _ in range(count):
            li.append(role)
    # 5.得出结论
    text = ' '.join(li)
    WordCloud(
        font_path='msyh.ttc',
        background_color='white',
        width=800,
        height=600,
        # 相邻两个重复词之间的匹配
        collocations=False
    ).generate(text).to_file('./TOP10.png')
    # 6.绘制三国TOP10饼图
    plt.pie(count2, shadow=True, labels=count1, autopct='%1.lf%%')
    plt.legend(loc=2)
    plt.axis('equal')
    plt.show()
三国词云.png

人物Top10.png

5.练习--红楼梦Top10人物分析

import jieba
from wordcloud import WordCloud
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
import string
# 1.读取小说
with open('./novel/all.txt', 'r', encoding='utf-8') as f:
    words = f.read()
    counts = {}
    excludes = {"什么", "一个", "我们", "你们", "如今", "说道", "知道", "起来", "这里",
               "出来", "众人", "那里", "自己", "一面", "只见", "太太", "两个", "没有",
               "怎么", "不是", "不知", "这个", "听见", "这样", "进来", "咱们", "就是",
               "老太太", "东西", "告诉", "回来", "只是", "大家", "姑娘", "奶奶", "老爷",
               "凤姐儿", "只得", "丫头", "这些", "他们", "不敢", "出去", "所以"}
    # 2.分词
    words_list = jieba.lcut(words)
    # print(words_list)
    for word in words_list:
        if len(word) <= 1:
            continue
        else:
            # 更新字典中的值
            # counts[word] = counts[word] + 1
            # 字典.get(k) 如果字典中没有这个键 返回none
            counts[word] = counts.get(word, 0) + 1
    print(len(counts))
    # 3.词语过滤,删除无关词、重复词
    counts['凤姐'] = counts['凤姐'] + counts['凤姐儿'] + counts['王熙凤']
    counts['贾母'] = counts['贾母'] + counts['老太太'] + counts['太太'] + counts['奶奶']
    counts['黛玉'] = counts['黛玉'] + counts['姑娘'] + counts['林黛玉']
    counts['宝玉'] = counts['宝玉'] + counts['贾宝玉']
    for word in excludes:
        del counts[word]
    # 4.排序
    items = list(counts.items())
    print(items)
    # def sort_by_counts(x):
    #     return x[1]
    # items.sort(key=sort_by_counts, reverse=True)
    items.sort(key=lambda x: x[1], reverse=True)
    # print(items)
    li = []
    count1 = []
    count2 = []
    for i in range(10):
        # 序列解包
        role, count = items[i]
        print(role, count)
        count1.append(role)
        count2.append(count)
        # _是告诉循环里面不需要使用临时变量
        for _ in range(count):
            li.append(role)
    # 5.得出结论
    text = ' '.join(li)
    WordCloud(
        font_path='msyh.ttc',
        background_color='bisque',
        width=800,
        height=600,
        # 相邻两个重复词之间的匹配
        collocations=False
    ).generate(text).to_file('./HTOP10.png')
    # 6.绘制TOP10饼图
    plt.pie(count2, shadow=True, labels=count1, autopct='%1.lf%%')
    plt.legend(loc=2)
    plt.axis('equal')
    plt.show()
红楼梦人物Top10.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351