用python进行数据分析的五个最常用库

http://www.360doc.com/content/15/0412/10/17132703_462592209.shtml

1、pandas

Pandas包含高级数据结构,以及和让数据分析变得快速、简单的工具。它建立在NumPy之上,使以NumPy为中心的应用变得简单。

Pandas是进行数据清洗/整理(data munging)的最好工具。

http://pandas.pydata.org/pandas-docs/stable/10min.html

2、numpy

对于科学计算,它是Python创建的所有更高层工具的基础,NumPy不提供高级数据分析功能,但有了对NumPy数组和面向数组的计算的理解,能帮助你更有效地使用像Pandas之类的工具。

参考视频教程  https://vimeo.com/77263537

3、scipy

Scipy库依赖于NumPy,它提供便捷和快速的N维向量数组操作。SciPy库的建立就是和NumPy数组一起工作,并提供许多对用户友好的和有效的数值例程,如:数值积分和优化。SciPy提供模块用于优化、线性代数、积分以及其它数据科学中的通用任务。

参考教程 https://docs.scipy.org/doc/scipy/reference/tutorial/

4、matplotlib

Matlplotlib是Python的一个可视化模块。它让你方便地制作线条图、饼图、柱状图以及其它专业图形。使用Matplotlib,你可以定制所做图表的任一方面。在IPython中使用时,Matplotlib有一些互动功能,如:缩放和平移。它支持所有的操作系统下不同的GUI后端(back ends),并且可以将图形输出为常见地矢量图和图形格式,如:PDF、SVG、JPG、PNG、BMP和GIF等。


5、Scikit-learn

Scikit-learn是一个用于机器学习的Python模块。它建立在Scipy之上,提供了一套常用机器学习算法,让使用者通过一个统一的接口来使用。Scikit-learn有助于你迅速地在你的数据集上实现流行的算法。

内置各算法教程   http://scikit-learn.org/stable/user_guide.html

这些教程都非常适合初学者。不过,在学习这些教程前,先要熟悉Python语言的基本编程知识。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容