百度paddlepaddle2.0.1 图片搜索示例代码

原文:基于图片相似度的图片搜索
https://www.paddlepaddle.org.cn/documentation/docs/zh/tutorial/cv_case/image_search/image_search.html

# -*- coding: utf-8 -*-

import paddle
import paddle.nn.functional as F
import numpy as np
import random
import matplotlib.pyplot as plt
from PIL import Image
from collections import defaultdict
print(paddle.__version__)
import paddle.vision.transforms as T
transform = T.Compose([T.Transpose((2, 0, 1))])


#train set
cifar10_train = paddle.vision.datasets.Cifar10(mode='train', transform=transform)
x_train = np.zeros((50000, 3, 32, 32))
y_train = np.zeros((50000, 1), dtype='int32')

for i in range(len(cifar10_train)):
    train_image, train_label = cifar10_train[i]

    # normalize the data
    x_train[i,:, :, :] = train_image / 255.
    y_train[i, 0] = train_label
y_train = np.squeeze(y_train)
print(x_train.shape)
print(y_train.shape)

#test set
cifar10_test = paddle.vision.datasets.cifar.Cifar10(mode='test', transform=transform)
x_test = np.zeros((10000, 3, 32, 32), dtype='float32')
y_test = np.zeros((10000, 1), dtype='int64')
for i in range(len(cifar10_test)):
    test_image, test_label = cifar10_test[i]
    # normalize the data
    x_test[i,:, :, :] = test_image / 255.
    y_test[i, 0] = test_label
y_test = np.squeeze(y_test)
print(x_test.shape)
print(y_test.shape)


height_width = 32
def show_collage(examples):
    box_size = height_width + 2
    num_rows, num_cols = examples.shape[:2]

    collage = Image.new(
        mode="RGB",
        size=(num_cols * box_size, num_rows * box_size),
        color=(255, 255, 255),
    )
    for row_idx in range(num_rows):
        for col_idx in range(num_cols):
            array = (np.array(examples[row_idx, col_idx]) * 255).astype(np.uint8)
            array = array.transpose(1,2,0)
            collage.paste(
                Image.fromarray(array), (col_idx * box_size, row_idx * box_size)
            )

    collage = collage.resize((2 * num_cols * box_size, 2 * num_rows * box_size))
    return collage

sample_idxs = np.random.randint(0, 50000, size=(5, 5))
examples = x_train[sample_idxs]
show_collage(examples)


#获取不同类别对应的id
class_idx_to_train_idxs = defaultdict(list)
for y_train_idx, y in enumerate(y_train):
    class_idx_to_train_idxs[y].append(y_train_idx)

class_idx_to_test_idxs = defaultdict(list)
for y_test_idx, y in enumerate(y_test):
    class_idx_to_test_idxs[y].append(y_test_idx)


#图片数据迭代器
num_classes = 10
def reader_creator(num_batchs):
    def reader():
        iter_step = 0
        while True:
            if iter_step >= num_batchs:
                break
            iter_step += 1
            x = np.empty((2, num_classes, 3, height_width, height_width), dtype=np.float32)
            for class_idx in range(num_classes):
                examples_for_class = class_idx_to_train_idxs[class_idx]
                anchor_idx = random.choice(examples_for_class)
                positive_idx = random.choice(examples_for_class)
                while positive_idx == anchor_idx:
                    positive_idx = random.choice(examples_for_class)
                x[0, class_idx] = x_train[anchor_idx]
                x[1, class_idx] = x_train[positive_idx]
            yield x

    return reader


# num_batchs: how many batchs to generate
def anchor_positive_pairs(num_batchs=100):
    return reader_creator(num_batchs)

pairs_train_reader = anchor_positive_pairs(num_batchs=1000)


examples = next(pairs_train_reader())
print(examples.shape)
show_collage(examples)



class MyNet(paddle.nn.Layer):
    def __init__(self):
        super(MyNet, self).__init__()

        self.conv1 = paddle.nn.Conv2D(in_channels=3,
                                      out_channels=32,
                                      kernel_size=(3, 3),
                                      stride=2)

        self.conv2 = paddle.nn.Conv2D(in_channels=32,
                                      out_channels=64,
                                      kernel_size=(3,3),
                                      stride=2)

        self.conv3 = paddle.nn.Conv2D(in_channels=64,
                                      out_channels=128,
                                      kernel_size=(3,3),
                                      stride=2)

        self.gloabl_pool = paddle.nn.AdaptiveAvgPool2D((1,1))

        self.fc1 = paddle.nn.Linear(in_features=128, out_features=8)
    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.gloabl_pool(x)
        x = paddle.squeeze(x, axis=[2, 3])
        x = self.fc1(x)
        x = x / paddle.norm(x, axis=1, keepdim=True)
        return x




def train(model):
    print('start training ... ')
    model.train()

    inverse_temperature = paddle.to_tensor(np.array([1.0/0.2], dtype='float32'))

    epoch_num = 20

    opt = paddle.optimizer.Adam(learning_rate=0.0001,
                                parameters=model.parameters())

    for epoch in range(epoch_num):
        for batch_id, data in enumerate(pairs_train_reader()):
            anchors_data, positives_data = data[0], data[1]

            anchors = paddle.to_tensor(anchors_data)
            positives = paddle.to_tensor(positives_data)

            anchor_embeddings = model(anchors)
            positive_embeddings = model(positives)

            similarities = paddle.matmul(anchor_embeddings, positive_embeddings, transpose_y=True)
            similarities = paddle.multiply(similarities, inverse_temperature)

            sparse_labels = paddle.arange(0, num_classes, dtype='int64')

            loss = F.cross_entropy(similarities, sparse_labels)

            if batch_id % 500 == 0:
                print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, loss.numpy()))
            loss.backward()
            opt.step()
            opt.clear_grad()

model = MyNet()
train(model)


near_neighbours_per_example = 10

x_test_t = paddle.to_tensor(x_test)
test_images_embeddings = model(x_test_t)
similarities_matrix = paddle.matmul(test_images_embeddings, test_images_embeddings, transpose_y=True)

indicies = paddle.argsort(similarities_matrix, descending=True)
indicies = indicies.numpy()


examples = np.empty(
    (
        num_classes,
        near_neighbours_per_example + 1,
        3,
        height_width,
        height_width,
    ),
    dtype=np.float32,
)

for row_idx in range(num_classes):
    examples_for_class = class_idx_to_test_idxs[row_idx]
    anchor_idx = random.choice(examples_for_class)

    examples[row_idx, 0] = x_test[anchor_idx]
    anchor_near_neighbours = indicies[anchor_idx][1:near_neighbours_per_example+1]
    for col_idx, nn_idx in enumerate(anchor_near_neighbours):
        examples[row_idx, col_idx + 1] = x_test[nn_idx]

show_collage(examples)







©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容