MediaEffects Sample (API23)
// GLSurfaceView init
mEffectView = (GLSurfaceView) view.findViewById(R.id.effectsview);
mEffectView.setEGLContextClientVersion(2);
mEffectView.setRenderer(this);
mEffectView.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
//*********************************************************************************************
private EffectContext mEffectContext;
private Effect mEffect;
private TextureRenderer mTexRenderer = new TextureRenderer();
// implement GLSurfaceView.Renderer
@Override
public void onSurfaceChanged(GL10 gl, int width, int height) {
if (mTexRenderer != null) {
mTexRenderer.updateViewSize(width, height);
}
}
@Override
public void onDrawFrame(GL10 gl) {
if (!mInitialized) {
//Only need to do this once
mEffectContext = EffectContext.createWithCurrentGlContext();
mTexRenderer.init();
loadTextures();
mInitialized = true;
}
if (mCurrentEffect != R.id.none) {
//if an effect is chosen initialize it and apply it to the texture
applyEffect();
}
renderResult();
}
private void loadTextures() {
// Generate textures
GLES20.glGenTextures(2, mTextures, 0);
// Load input bitmap
Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.puppy);
mImageWidth = bitmap.getWidth();
mImageHeight = bitmap.getHeight();
mTexRenderer.updateTextureSize(mImageWidth, mImageHeight);
// Upload to texture
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, mTextures[0]);
GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0, bitmap, 0);
// Set texture parameters
GLToolbox.initTexParams();
}
private void applyEffect() {
EffectFactory effectFactory = mEffectContext.getFactory();
if (mEffect != null) {
mEffect.release();
}
mEffect = effectFactory.createEffect(EffectFactory.EFFECT_BLACKWHITE);
mEffect.setParameter("black", .1f);
mEffect.setParameter("white", .7f);
mEffect.apply(mTextures[0], mImageWidth, mImageHeight, mTextures[1]);
}
OpenGL ES developer guide
OpenGL ES packages
- OpenGL ES 2.0 API Class
android.opengl.GLES20 - This package provides the interface to OpenGL ES 2.0 and is available starting with Android 2.2 (API level 8). - OpenGL ES 3.0/3.1 API Packages
android.opengl - This package provides the interface to the OpenGL ES 3.0/3.1 classes. Version 3.0 is available starting with Android 4.3 (API level 18). Version 3.1 is available starting with Android 5.0 (API level 21).
Declaring OpenGL Requirements
- Purpose
Google Play to restrict your application from being installed on devices that do not support that opengl version. - The OpenGL ES 3.x API is backwards-compatible with the 2.0 API
<!-- Tell the system this app requires OpenGL ES 2.0. -->
<uses-feature android:glEsVersion="0x00020000" android:required="true" />
<!-- Tell the system this app requires OpenGL ES 3.0. -->
<uses-feature android:glEsVersion="0x00030000" android:required="true" />
<!-- Tell the system this app requires OpenGL ES 3.1. -->
<uses-feature android:glEsVersion="0x00030001" android:required="true" />
- **Texture compression requirements **- If your application uses texture compression formats, you must declare the formats your application supports in your manifest file using <supports-gl-texture>.
Mapping Coordinates for Drawn Objects
- Android devices screen can vary in size and shape, OpenGL assumes a square, uniform coordinate system.
- Default OpenGL coordinate system (left) mapped to a typical Android device screen (right).
In order to apply projection and camera views, you create a projection matrix and a camera view matrix and apply them to the OpenGL rendering pipeline. The projection matrix recalculates the coordinates of your graphics so that they map correctly to Android device screens. The camera view matrix creates a transformation that renders objects from a specific eye position.
Projection and camera view in OpenGL ES 2.0 and higher
- Add matrix to vertex shaders
private final String vertexShaderCode =
// This matrix member variable provides a hook to manipulate
// the coordinates of objects that use this vertex shader.
"uniform mat4 uMVPMatrix; \n" +
"attribute vec4 vPosition; \n" +
"void main(){ \n" +
// The matrix must be included as part of gl_Position
// Note that the uMVPMatrix factor *must be first* in order
// for the matrix multiplication product to be correct.
" gl_Position = uMVPMatrix * vPosition; \n" +
"} \n";
- Access the shader matrix
public void onSurfaceCreated(GL10 unused, EGLConfig config) { ... muMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix"); ...}
- Create projection and camera viewing matrices
public void onDrawFrame(GL10 unused) {
...
// Combine the projection and camera view matrices
Matrix.multiplyMM(mMVPMatrix, 0, mProjMatrix, 0, mVMatrix, 0);
// Apply the combined projection and camera view transformations
GLES20.glUniformMatrix4fv(muMVPMatrixHandle, 1, false, mMVPMatrix, 0);
// Draw objects
...
Texture compression support
Texture compression can significantly increase the performance of your OpenGL application by reducing memory requirements and making more efficient use of memory bandwidth.The Android framework provides support for the ETC1 compression format as a standard fearture, including a ETC1Util
utility class and the etc1tool
compression tool (located in the Android SDK at <sdk>/tools/). Sample CompressedTextureActivity
in ApiDemos.
Note: Once you decide which texture compression formats your application will support, make sure you declare them in your manifest using <supports-gl-texture> . Using this declaration enables filtering by external services such as Google Play, so that your app is installed only on devices that support the formats your app requires. For details, see OpenGL manifest declarations.
Checking the OpenGL ES Version
private static double glVersion = 3.0;
private static class ContextFactory implements GLSurfaceView.EGLContextFactory {
private static int EGL_CONTEXT_CLIENT_VERSION = 0x3098;
public EGLContext createContext(
EGL10 egl, EGLDisplay display, EGLConfig eglConfig) {
Log.w(TAG, "creating OpenGL ES " + glVersion + " context");
int[] attrib_list = {EGL_CONTEXT_CLIENT_VERSION, (int) glVersion,
EGL10.EGL_NONE };
// attempt to create a OpenGL ES 3.0 context
EGLContext context = egl.eglCreateContext(
display, eglConfig, EGL10.EGL_NO_CONTEXT, attrib_list);
return context; // returns null if 3.0 is not supported;
}
}
// Create a minimum supported OpenGL ES context, then check:
String version = javax.microedition.khronos.opengles.GL10.glGetString(
GL10.GL_VERSION);
Log.w(TAG, "Version: " + version );
// The version format is displayed as: "OpenGL ES <major>.<minor>"
// followed by optional content provided by the implementation.
Displaying Graphics with OpenGL ES
- Vertex Shader - OpenGL ES graphics code for rendering the vertices of a shape.
- Fragment Shader - OpenGL ES code for rendering the face of a shape with colors or textures.
- Program - An OpenGL ES object that contains the shaders you want to use for drawing one or more shapes.
Applying Projection and Camera Views
-
Projection - This transformation adjusts the coordinates of drawn objects based on the width and height of theGLSurfaceView
where they are displayed. Without this calculation, objects drawn by OpenGL ES are skewed by the unequal proportions of the view window. A projection transformation typically only has to be calculated when the proportions of the OpenGL view are established or changed in the [onSurfaceChanged()](http://developer.android.com/reference/android/opengl/GLSurfaceView.Renderer.html#onSurfaceChanged(javax.microedition.khronos.opengles.GL10, int, int))
method of your renderer. For more information about OpenGL ES projections and coordinate mapping, see Mapping Coordinates for Drawn Objects.
-
Camera View - This transformation adjusts the coordinates of drawn objects based on a virtual camera position. It’s important to note that OpenGL ES does not define an actual camera object, but instead provides utility methods that simulate a camera by transforming the display of drawn objects. A camera view transformation might be calculated only once when you establish your GLSurfaceView
, or might change dynamically based on user actions or your application’s function.
Draw a Shape
Drawing a defined shape using OpenGL ES 2.0 requires a significant amount of code, because you must provide a lot of details to the graphics rendering pipeline. Specifically, you must define the following:
- Vertex Shader - OpenGL ES graphics code for rendering the vertices of a shape.
- Fragment Shader - OpenGL ES code for rendering the face of a shape with colors or textures.
- Program - An OpenGL ES object that contains the shaders you want to use for drawing one or more shapes.
OpenGLES [google.org example ].zip
public class Triangle {
private final String vertexShaderCode =
"attribute vec4 vPosition;" +
"void main() {" +
" gl_Position = vPosition;" +
"}";
private final String fragmentShaderCode =
"precision mediump float;" +
"uniform vec4 vColor;" +
"void main() {" +
" gl_FragColor = vColor;" +
"}";
...
}
Shaders contain OpenGL Shading Language (GLSL) code that must be compiled prior to using it in the OpenGL ES environment. To compile this code, create a utility method in your renderer class:
public static int loadShader(int type, String shaderCode){
// create a vertex shader type (GLES20.GL_VERTEX_SHADER)
// or a fragment shader type (GLES20.GL_FRAGMENT_SHADER)
int shader = GLES20.glCreateShader(type);
// add the source code to the shader and compile it
GLES20.glShaderSource(shader, shaderCode);
GLES20.glCompileShader(shader);
return shader;
}
Note: Compiling OpenGL ES shaders and linking programs is expensive in terms of CPU cycles and processing time, so you should avoid doing this more than once. If you do not know the content of your shaders at runtime, you should build your code such that they only get created once and then cached for later use.
Link program
public class Triangle() {
...
private final int mProgram;
public Triangle() {
...
int vertexShader = MyGLRenderer.loadShader(GLES20.GL_VERTEX_SHADER,
vertexShaderCode);
int fragmentShader = MyGLRenderer.loadShader(GLES20.GL_FRAGMENT_SHADER,
fragmentShaderCode);
// create empty OpenGL ES Program
mProgram = GLES20.glCreateProgram();
// add the vertex shader to program
GLES20.glAttachShader(mProgram, vertexShader);
// add the fragment shader to program
GLES20.glAttachShader(mProgram, fragmentShader);
// creates OpenGL ES program executables
GLES20.glLinkProgram(mProgram);
}
}
Change parameters **"vPosition", "vColor" ** add to the program ==> onDraw()
private int mPositionHandle;
private int mColorHandle;
private final int vertexCount = triangleCoords.length / COORDS_PER_VERTEX;
private final int vertexStride = COORDS_PER_VERTEX * 4; // 4 bytes per vertex
public void draw() {
// Add program to OpenGL ES environment
GLES20.glUseProgram(mProgram);
// get handle to vertex shader's vPosition member
mPositionHandle = GLES20.glGetAttribLocation(mProgram, "vPosition");
// Enable a handle to the triangle vertices
GLES20.glEnableVertexAttribArray(mPositionHandle);
// Prepare the triangle coordinate data
GLES20.glVertexAttribPointer(mPositionHandle, COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false,
vertexStride, vertexBuffer);
// get handle to fragment shader's vColor member
mColorHandle = GLES20.glGetUniformLocation(mProgram, "vColor");
// Set color for drawing the triangle
GLES20.glUniform4fv(mColorHandle, 1, color, 0);
// Draw the triangle
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, vertexCount);
// Disable vertex array
GLES20.glDisableVertexAttribArray(mPositionHandle);
}
Applying Projection and Camera Views
Reason more: see Mapping Coordinates for Drawn Objects
- Android devices screen can vary in size and shape, OpenGL assumes a square, uniform coordinate system.
- Default OpenGL coordinate system (left) mapped to a typical Android device screen (right).
- Define a Projection
// mMVPMatrix is an abbreviation for "Model View Projection Matrix"
private final float[] mMVPMatrix = new float[16];
private final float[] mProjectionMatrix = new float[16];
private final float[] mViewMatrix = new float[16];
@Override
public void onSurfaceChanged(GL10 unused, int width, int height) {
GLES20.glViewport(0, 0, width, height);
float ratio = (float) width / height;
// this projection matrix is applied to object coordinates
// in the onDrawFrame() method
Matrix.frustumM(mProjectionMatrix, 0, -ratio, ratio, -1, 1, 3, 7);
}
Note: Just applying a projection transformation to your drawing objects typically results in a very empty display. In general, you must also apply a camera view transformation in order for anything to show up on screen.
- Define a Camera View
@Override
public void onDrawFrame(GL10 unused) {
...
// Set the camera position (View matrix)
Matrix.setLookAtM(mViewMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
// Calculate the projection and view transformation
Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mViewMatrix, 0);
// Draw shape
mTriangle.draw(mMVPMatrix);
}
- Apply Projection and Camera Transformations
Triangle class
public class Triangle {
private final String vertexShaderCode =
// This matrix member variable provides a hook to manipulate
// the coordinates of the objects that use this vertex shader
"uniform mat4 uMVPMatrix;" +
"attribute vec4 vPosition;" +
"void main() {" +
// the matrix must be included as a modifier of gl_Position
// Note that the uMVPMatrix factor *must be first* in order
// for the matrix multiplication product to be correct.
" gl_Position = uMVPMatrix * vPosition;" +
"}";
// Use to access and set the view transformation
private int mMVPMatrixHandle;
...
}
public void draw(float[] mvpMatrix) { // pass in the calculated transformation matrix
...
// get handle to shape's transformation matrix
**mMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");**
// Pass the projection and view transformation to the shader
GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mvpMatrix, 0);
// Draw the triangle
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, vertexCount);
// Disable vertex array
GLES20.glDisableVertexAttribArray(mPositionHandle);
}