Flink 获取kafka数据 sinkHbase

1. 处理流程:

 通过flink 从kafka 中获取到数据, 然后在sink 到hbase 中
数据结构
{"address":"深圳","age":20,"createTime":"2021-12-08 22:30","id":1,"name":"hdfs"}

2.Hbase 建表

hbase(main):002:0> create 'wudluser','cf', { NUMREGIONS => 15, SPLITALGO =>'HexStringSplit'}
Created table wudluser
Took 3.1878 seconds                                                                                                                                                                                      
=> Hbase::Table - wudluser
hbase(main):003:0>

3. kafak 使用命令

./kafka-topics.sh --zookeeper 192.168.1.161:2181 --create --topic wudltopic --replication-factor 1 --partitions 1
./kafka-console-producer.sh --broker-list 192.168.1.161:6667 --topic wudltopic
./kafka-console-consumer.sh --bootstrap-server 192.168.1.161:6667 --topic wudltopic

4. 项目结构:

在这里插入图片描述

主要的类: HbaseSink 类

4.1 pom 文件:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<!--    <parent>-->
<!--        <artifactId>Flink-learning</artifactId>-->
<!--        <groupId>com.wudl.flink</groupId>-->
<!--        <version>1.0-SNAPSHOT</version>-->
<!--    </parent>-->

    <groupId>org.wudlflink13</groupId>
    <version>1.0-SNAPSHOT</version>
    <modelVersion>4.0.0</modelVersion>

    <artifactId>wudl-flink-13</artifactId>

    <!-- 指定仓库位置,依次为aliyun、apache和cloudera仓库 -->
    <repositories>
        <repository>
            <id>aliyun</id>
            <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
        </repository>
        <repository>
            <id>apache</id>
            <url>https://repository.apache.org/content/repositories/snapshots/</url>
        </repository>
        <repository>
            <id>cloudera</id>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
        </repository>

        <repository>
            <id>spring-plugin</id>
            <url>https://repo.spring.io/plugins-release/</url>
        </repository>

    </repositories>

    <properties>
        <encoding>UTF-8</encoding>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <java.version>1.8</java.version>
        <scala.version>2.11</scala.version>
        <flink.version>1.13.3</flink.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.78</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-elasticsearch7_2.11</artifactId>
            <version>1.12.3</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-hbase-2.2_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>


        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-jdbc_2.11</artifactId>
            <version>1.10.3</version>
        </dependency>

        <!--依赖Scala语言-->


        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>${flink.version}</version>
            <exclusions>
                <exclusion>
                    <artifactId>slf4j-api</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-scala-bridge_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java-bridge_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <!-- blink执行计划,1.11+默认的-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_2.12</artifactId>
            <version>${flink.version}</version>
            <exclusions>
                <exclusion>
                    <artifactId>slf4j-api</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-common</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-cep_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <!-- flink连接器-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-sql-connector-kafka_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-jdbc_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-json</artifactId>
            <version>${flink.version}</version>
        </dependency>
        
        <dependency>
            <groupId>org.apache.bahir</groupId>
            <artifactId>flink-connector-redis_2.11</artifactId>
            <version>1.0</version>
            <exclusions>
                <exclusion>
                    <artifactId>flink-streaming-java_2.11</artifactId>
                    <groupId>org.apache.flink</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>flink-runtime_2.11</artifactId>
                    <groupId>org.apache.flink</groupId>
                </exclusion>
                <!--                <exclusion>-->
                <!--                    <artifactId>flink-core</artifactId>-->
                <!--                    <groupId>org.apache.flink</groupId>-->
                <!--                </exclusion>-->
                <exclusion>
                    <artifactId>flink-java</artifactId>
                    <groupId>org.apache.flink</groupId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-hive_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-metastore</artifactId>
            <version>2.1.0</version>
            <exclusions>
                <exclusion>
                    <artifactId>hadoop-hdfs</artifactId>
                    <groupId>org.apache.hadoop</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>slf4j-api</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-exec</artifactId>
            <version>2.1.0</version>
            <exclusions>
                <exclusion>
                    <artifactId>slf4j-api</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-shaded-hadoop-2-uber</artifactId>
            <version>2.7.5-10.0</version>
            <exclusions>
                <exclusion>
                    <artifactId>slf4j-log4j12</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
            <version>2.1.0</version>
            <exclusions>
                <exclusion>
                    <artifactId>slf4j-api</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>slf4j-log4j12</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.38</version>
            <!--<version>8.0.20</version>-->
        </dependency>

        <!-- 高性能异步组件:Vertx-->
        <dependency>
            <groupId>io.vertx</groupId>
            <artifactId>vertx-core</artifactId>
            <version>3.9.0</version>
        </dependency>
        <dependency>
            <groupId>io.vertx</groupId>
            <artifactId>vertx-jdbc-client</artifactId>
            <version>3.9.0</version>
        </dependency>
        <dependency>
            <groupId>io.vertx</groupId>
            <artifactId>vertx-redis-client</artifactId>
            <version>3.9.0</version>
        </dependency>

        <!-- 日志 -->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.7</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.17</version>
            <scope>runtime</scope>
        </dependency>


        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.2</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>3.1.3</version>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.1.3</version>
            <exclusions>
                <exclusion>
                    <artifactId>slf4j-api</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>slf4j-log4j12</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-hbase_2.11</artifactId>
            <version>1.10.1</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

4.2 User 类

package com.wudl.flink.hbase.model;

import com.alibaba.fastjson.JSON;
import lombok.Data;

/**
 * @author :wudl
 * @date :Created in 2021-12-08 22:30
 * @description: {"address":"深圳","age":20,"createTime":"2021-12-08 22:30","id":1,"name":"hdfs"}
 * @modified By:
 * @version: 1.0
 */

@Data
public class User {
    private  Long id;
    private String name;
    private int age;
    private  String address;
    private String createTime;

    public static void main(String[] args) {
        User u = new User();
        u.setId(1l);
        u.setName("hdfs");
        u.setAge(20);
        u.setAddress("深圳");
        u.setCreateTime("2021-12-08 22:30");
        String s = JSON.toJSONString(u);
        System.out.println(s);
    }

}

4.3 自定义flink sinkHbase 类

package com.wudl.flink.hbase.slink;

import com.wudl.flink.hbase.model.User;
import com.wudl.flink.hbase.utils.DateUtils;
import com.wudl.flink.hbase.utils.HbaseUtils;
import com.wudl.flink.hbase.utils.RowKeyUtils;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.BufferedMutator;
import org.apache.hadoop.hbase.client.BufferedMutatorParams;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.text.ParseException;


/**
 * @author :wudl
 * @date :Created in 2021-12-08 21:43
 * @description:
 * @modified By:
 * @version: 1.0
 */
public class HbaseSink extends RichSinkFunction<User> {
    private final static Logger logger = LoggerFactory.getLogger(HbaseSink.class);
    Connection conn = null;

    private String tableName = "wudluser";
    private BufferedMutator mutator = null;


    @Override
    public void open(Configuration parameters) throws Exception {
        //从上下文获取到全局参数
        super.open(parameters);
        org.apache.hadoop.conf.Configuration conf = HBaseConfiguration.create();
        //设置缓存对象的多大、多长时间刷写到HBase中
        //缓存写入HBaes,与Kafka的缓存写入Kafka有异曲同工之秒
        BufferedMutatorParams params = new BufferedMutatorParams(TableName.valueOf(tableName));
        //设置缓存达到一定的大小:10M
        params.writeBufferSize(10 * 1024 * 1024L);
        //设置缓存达到一定的时间:5s
        params.setWriteBufferPeriodicFlushTimeoutMs(5 * 1000L);
            conn = HbaseUtils.getConnect();
        BufferedMutator bufferedMutator = conn.getBufferedMutator(params);
        try {
            mutator = conn.getBufferedMutator(params);
        } catch (IOException e) {
            logger.error("当前获取bufferedMutator 失败:" + e.getMessage());
        }
    }

    //5. 重写 invoke 方法,将读取的数据写入到 hbase
    @Override
    public void invoke(User value, Context context) throws Exception {
        //5.1 setDataSourcePut输入参数value,返回put对象
        try {
            Put put = setDataSourcePut(value);
            // 可以批量写入
//            List<Put> listPut = new ArrayList<>();
            mutator.mutate(put);
            //5.2 指定时间内的数据强制刷写到hbase
            mutator.flush();
        } catch (Exception ex) {
            ex.printStackTrace();
            logger.error("写入到hbase失败:" + ex.getMessage());
        }
    }

    //4.重写close方法
    @Override
    public void close() throws Exception {
        //4.1 关闭hbase 表和连接资源
        HbaseUtils.close(mutator, conn);
    }

    //6. 实现 setDataSourcePut 方法

    /**
     * 每条对象生成一个 put
     * 1.表名 2.rowkey 3.列簇  4.列名和列值
     *
     * @param user
     * @return
     */
    private Put setDataSourcePut(User user) throws ParseException {
        byte[] rowKey = RowKeyUtils.getRowkey(user);
        String cf = "cf";
        Put put = new Put(rowKey);
        put.addColumn(Bytes.toBytes(cf), Bytes.toBytes("id"), Bytes.toBytes(String.valueOf(user.getId())));
        put.addColumn(Bytes.toBytes(cf), Bytes.toBytes("name"), Bytes.toBytes(user.getName()));
        put.addColumn(Bytes.toBytes(cf), Bytes.toBytes("age"), Bytes.toBytes(String.valueOf(user.getAge())));
        put.addColumn(Bytes.toBytes(cf), Bytes.toBytes("address"), Bytes.toBytes(user.getAddress()));
        put.addColumn(Bytes.toBytes(cf), Bytes.toBytes("createTime"), Bytes.toBytes(user.getCreateTime()));
        put.addColumn(Bytes.toBytes(cf), Bytes.toBytes("updateDate"), Bytes.toBytes(DateUtils.getCurrentTime()));
        return put;
    }

}

4.4 时间工具类DateUtils

package com.wudl.flink.hbase.utils;

import org.apache.commons.lang3.StringUtils;

import javax.crypto.spec.PSource;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.*;

/**
 * @author :wudl
 * @date :Created in 2021-12-08 23:16
 * @description:
 * @modified By:
 * @version: 1.0
 */

public class DateUtils {

    /**
     * 获得当前日期 yyyy-MM-dd HH:mm:ss
     *
     * @return 
     */
    public static String getCurrentTime() {
        // 小写的hh取得12小时,大写的HH取的是24小时
        SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        Date date = new Date();
        return df.format(date);
    }

    /**
     * 获取系统当前时间戳
     *
     * @return 1566889186583
     */
    public static String getSystemTime() {
        String current = String.valueOf(System.currentTimeMillis());
        return current;
    }


    /**
     * 获取当前日期 yy-MM-dd
     *
     * @return 2021-08-27
     */
    public static String getDateByString() {
        Date date = new Date();
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
        return sdf.format(date);
    }

    /**
     * 得到两个时间差  格式yyyy-MM-dd HH:mm:ss
     *
     * @param start 2021-06-27 14:12:40
     * @param end   2021-08-27 14:12:40
     * @return 5270400000
     */
    public static long dateSubtraction(String start, String end) {
        SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        try {
            Date date1 = df.parse(start);
            Date date2 = df.parse(end);
            return date2.getTime() - date1.getTime();
        } catch (ParseException e) {
            e.printStackTrace();
            return 0;
        }
    }

    /**
     * 得到两个时间差
     *
     * @param start 开始时间
     * @param end 结束时间
     * @return
     */
    public static long dateTogether(Date start, Date end) {
        return end.getTime() - start.getTime();
    }

    /**
     * 转化long值的日期为yyyy-MM-dd  HH:mm:ss.SSS格式的日期
     *
     * @param millSec 日期long值  5270400000
     * @return 日期,以yyyy-MM-dd  HH:mm:ss.SSS格式输出 1970-03-03  08:00:00.000
     */
    public static String transferLongToDate(String millSec) {
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd  HH:mm:ss.SSS");
        Date date = new Date(Long.parseLong(millSec));
        return sdf.format(date);
    }

    /**
     * 获得当前日期 yyyy-MM-dd HH:mm:ss
     *
     * @return
     */
    public static String getOkDate(String date) {
        try {
            if (StringUtils.isEmpty(date)) {
                return null;
            }
            Date date1 = new SimpleDateFormat("EEE MMM dd HH:mm:ss Z yyyy", Locale.ENGLISH).parse(date);
            //格式化
            SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
            return sdf.format(date1);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return null;
    }


    /**
     * 获取当前日期是一个星期的第几天
     *
     * @return 2
     */
    public static int getDayOfWeek() {
        Calendar cal = Calendar.getInstance();
        cal.setTime(new Date());
        return cal.get(Calendar.DAY_OF_WEEK) - 1;
    }


    /**
     * 判断当前时间是否在[startTime, endTime]区间,注意时间格式要一致
     *
     * @param nowTime     当前时间
     * @param dateSection 时间区间   2021-01-08,2019-09-09
     * @return
     * @author jqlin
     */
    public static boolean isEffectiveDate(Date nowTime, String dateSection) {
        try {
            String[] times = dateSection.split(",");
            String format = "yyyy-MM-dd";
            Date startTime = new SimpleDateFormat(format).parse(times[0]);
            Date endTime = new SimpleDateFormat(format).parse(times[1]);
            if (nowTime.getTime() == startTime.getTime()
                    || nowTime.getTime() == endTime.getTime()) {
                return true;
            }
            Calendar date = Calendar.getInstance();
            date.setTime(nowTime);

            Calendar begin = Calendar.getInstance();
            begin.setTime(startTime);

            Calendar end = Calendar.getInstance();
            end.setTime(endTime);

            if (isSameDay(date, begin) || isSameDay(date, end)) {
                return true;
            }
            if (date.after(begin) && date.before(end)) {
                return true;
            } else {
                return false;
            }
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    public static boolean isSameDay(Calendar cal1, Calendar cal2) {
        if (cal1 != null && cal2 != null) {
            return cal1.get(0) == cal2.get(0) && cal1.get(1) == cal2.get(1) && cal1.get(6) == cal2.get(6);
        } else {
            throw new IllegalArgumentException("The date must not be null");
        }
    }

    public static long getTimeByDate(String time) {
        SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        try {
            Date date = format.parse(time);
            //日期转时间戳(毫秒)
            return date.getTime();
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }

    /**
     * 获取当前小时 :2021-08-23 17
     *
     * @return  2021-08-27 17
     */
    public static String getCurrentHour() {
        GregorianCalendar calendar = new GregorianCalendar();
        int hour = calendar.get(Calendar.HOUR_OF_DAY);
        if (hour < 10) {
            return DateUtils.getCurrentTime() + " 0" + hour;
        }
        return DateUtils.getDateByString() + " " + hour;
    }

    /**
     * 获取当前时间一个小时前
     * @return 2019-08-27 16
     */
    public static String getCurrentHourBefore() {
        GregorianCalendar calendar = new GregorianCalendar();
        int hour = calendar.get(Calendar.HOUR_OF_DAY);
        if (hour > 0) {
            hour = calendar.get(Calendar.HOUR_OF_DAY) - 1;
            if (hour < 10) {
                return DateUtils.getDateByString() + " 0" + hour;
            }
            return DateUtils.getDateByString() + " " + hour;
        }
        //获取当前日期前一天
        return DateUtils.getBeforeDay() + " " + 23;
    }

    /**
     * 获取当前日期前一天
     *
     * @return 2021-08-26
     */
    public static String getBeforeDay() {

        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
        Date date = new Date();
        Calendar calendar = Calendar.getInstance();
        calendar.setTime(date);
        calendar.add(Calendar.DAY_OF_MONTH, -1);
        date = calendar.getTime();
        return sdf.format(date);
    }


    /**
     * 获取最近七天
     *
     * @return 2021-08-20
     */
    public static String getServen() {
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");

        Calendar c = Calendar.getInstance();

        c.add(Calendar.DATE, -7);

        Date monday = c.getTime();

        String preMonday = sdf.format(monday);

        return preMonday;
    }

    /**
     * 获取最近一个月
     *
     * @return 2021-07-27
     */
    public static String getOneMonth() {
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");

        Calendar c = Calendar.getInstance();

        c.add(Calendar.MONTH, -1);

        Date monday = c.getTime();

        String preMonday = sdf.format(monday);

        return preMonday;
    }

    /**
     * 获取最近三个月
     *
     * @return 2021-05-27
     */
    public static String getThreeMonth() {
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");

        Calendar c = Calendar.getInstance();

        c.add(Calendar.MONTH, -3);

        Date monday = c.getTime();

        String preMonday = sdf.format(monday);

        return preMonday;
    }

    /**
     * 获取最近一年
     *
     * @return 2021-08-27
     */
    public static String getOneYear() {
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
        Calendar c = Calendar.getInstance();
        c.add(Calendar.YEAR, -1);
        Date start = c.getTime();
        String startDay = sdf.format(start);
        return startDay;
    }


    private static int month = Calendar.getInstance().get(Calendar.MONTH) + 1;
    /**
     * 获取今年月份数据
     * 说明 有的需求前端需要根据月份查询每月数据,此时后台给前端返回今年共有多少月份
     *
     * @return [1, 2, 3, 4, 5, 6, 7, 8]
     */
    public static List getMonthList(){
        List list = new ArrayList();
        for (int i = 1; i <= month; i++) {
            list.add(i);
        }
        return list;
    }

    /**
     * 返回当前年度季度list
     * 本年度截止目前共三个季度,然后根据1,2,3分别查询相关起止时间
     * @return [1, 2, 3]
     */
    public static List getQuartList(){
        int quart = month / 3 + 1;
        List list = new ArrayList();
        for (int i = 1; i <= quart; i++) {
            list.add(i);
        }
        return list;
    }

    public static void main(String[] args) {
        System.out.println(DateUtils. getCurrentTime());
        System.out.println("--"+System.currentTimeMillis());
    }

}

4.5 Hbase工具类

package com.wudl.flink.hbase.utils;

import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HConstants;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.BufferedMutator;
import org.apache.hadoop.hbase.client.BufferedMutatorParams;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.mapreduce.TableInputFormat;

import java.io.IOException;

/**
 * @author :wudl
 * @date :Created in 2021-12-08 23:57
 * @description:Hbase工具类
 * @modified By:
 * @version: 1.0
 */

public class HbaseUtils {
    private Connection conn = null;
    private static String tableName = "wudluser";

   private static   Connection instance = null;
    public static Connection getConnect() throws IOException {
        Connection conn = null;
        org.apache.hadoop.conf.Configuration conf = HBaseConfiguration.create();
        conf.set(HConstants.ZOOKEEPER_QUORUM,"192.168.1.161");
        conf.set(HConstants.ZOOKEEPER_CLIENT_PORT,"2181");
        conf.set(TableInputFormat.INPUT_TABLE,tableName);
        org.apache.hadoop.conf.Configuration hbaseConf = HBaseConfiguration.create(conf);
        //通过连接工厂创建连接
        conn = ConnectionFactory.createConnection(hbaseConf);

        return conn;
    }

    public static void  close(BufferedMutator mutator,Connection conn) throws IOException {
        if (mutator != null) {
            mutator.close();
        }
        if (!conn.isClosed()) {
            conn.close();
        }
    }
}

4.6 KafkaUtils 工具类

package com.wudl.flink.hbase.utils;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;

import java.util.Properties;

/**
 * @author :wudl
 * @date :Created in 2021-12-08 22:20
 * @description:
 * @modified By:
 * @version: 1.0
 */

public class KafkaUtils {
    private static String brokers = "192.168.1.161:6667,192.168.1.162:6667,192.168.1.163:6667";
    private static String default_topic = "wudltopic";

    public static FlinkKafkaProducer<String> getKafkaProducer(String topic) {
        return new FlinkKafkaProducer<String>(brokers,
                topic,
                new SimpleStringSchema());
    }

    public static <T> FlinkKafkaProducer<T> getKafkaProducer(KafkaSerializationSchema<T> kafkaSerializationSchema) {

        Properties properties = new Properties();
        properties.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers);

        return new FlinkKafkaProducer<T>(default_topic,
                kafkaSerializationSchema,
                properties,
                FlinkKafkaProducer.Semantic.EXACTLY_ONCE);
    }

    public static FlinkKafkaConsumer<String> getKafkaConsumer(String topic, String groupId) {

        Properties properties = new Properties();

        properties.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers);

        return new FlinkKafkaConsumer<String>(topic,
                new SimpleStringSchema(),
                properties);

    }

    //拼接Kafka相关属性到DDL
    public static String getKafkaDDL(String topic, String groupId) {
        return " 'connector' = 'kafka', " +
                " 'topic' = '" + topic + "'," +
                " 'properties.bootstrap.servers' = '" + brokers + "', " +
                " 'properties.group.id' = '" + groupId + "', " +
                " 'format' = 'json', " +
                " 'scan.startup.mode' = 'latest-offset'  ";
    }
}

4.7 RowKeyUtils 工具类

package com.wudl.flink.hbase.utils;

import com.alibaba.fastjson.JSON;
import com.wudl.flink.hbase.model.User;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.MD5Hash;

import java.io.UnsupportedEncodingException;
import java.text.ParseException;
import java.text.SimpleDateFormat;

/**
 * @author :wudl
 * @date :Created in 2021-12-08 23:05
 * @description:
 * @modified By:
 * @version: 1.0
 */

public class RowKeyUtils {


    public static byte[] getRowkey(User User) throws ParseException {
        // 3. 构建ROWKEY
        // 发件人ID1反转
        StringBuilder stringBuilder = new StringBuilder(10);
//        stringBuilder.append("_");
//        stringBuilder.append(10);
//        stringBuilder.append("_");

        // 转换为时间戳
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd hh:MM:ss");
        stringBuilder.append(sdf.parse(User.getCreateTime()).getTime());
        byte[] orginkey = Bytes.toBytes(stringBuilder.toString());
        // 为了避免ROWKEY过长,取前八位
        String md5AsHex = MD5Hash.getMD5AsHex(orginkey).substring(0, 8);
        return Bytes.toBytes(md5AsHex + "_" + stringBuilder.toString());
    }



}

4.8 主类Application

package com.wudl.flink.hbase;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.google.gson.JsonObject;
import com.wudl.flink.hbase.model.User;
import com.wudl.flink.hbase.slink.HbaseSink;
import com.wudl.flink.hbase.utils.KafkaUtils;
import io.vertx.core.json.Json;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.concurrent.TimeUnit;

/**
 * @author :wudl
 * @date :Created in 2021-12-08 22:18
 * @description:
 * @modified By:
 * @version: 1.0
 */

public class Application {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        String sourceTopic = "wudltopic";
        String groupId = "2019";
        DataStreamSource<String> kafkaDs = env.addSource(KafkaUtils.getKafkaConsumer(sourceTopic, groupId));

        DataStream<User> userStream = kafkaDs.map(new MapFunction<String, User>() {
            @Override
            public User map(String s) throws Exception {
                User user = JSON.parseObject(s, User.class);
                return user;
            }
        });
        userStream.addSink(new HbaseSink());

        env.setRestartStrategy(RestartStrategies.failureRateRestart(
                //最大失败次数
                3,
                // 衡量失败次数的是时间段
                Time.of(2, TimeUnit.SECONDS),
                // 间隔
                Time.of(5, TimeUnit.SECONDS)
        ));
        env.execute();


    }

}

5. kafka 插入数据

{"address":"深圳","age":20,"createTime":"1638977618520","id":1,"name":"hdfs"}
{"address":"深圳2","age":21,"createTime":"2021-12-09 00:00:00","id":2,"name":"flink"}
{"address":"深圳5","age":24,"createTime":"2021-12-11 01:00:00","id":4,"name":"flink-sql03"}

6. 查看hbase 数据

scan 'wudluser'

hbase(main):109:0> scan 'wudluser'
ROW                                                 COLUMN+CELL                                                                                                                                          
 201095ee_1607446800000                             column=cf:address, timestamp=1638981031968, value=\xE6\xB7\xB1\xE5\x9C\xB35                                                                          
 201095ee_1607446800000                             column=cf:age, timestamp=1638981031968, value=24                                                                                                     
 201095ee_1607446800000                             column=cf:createTime, timestamp=1638981031968, value=2021-13-09 01:00:00                                                                             
 201095ee_1607446800000                             column=cf:id, timestamp=1638981031968, value=4                                                                                                       
 201095ee_1607446800000                             column=cf:name, timestamp=1638981031968, value=flink-sql03                                                                                           
 201095ee_1607446800000                             column=cf:updateDate, timestamp=1638981031968, value=2021-12-09 00:30:30                                                                             
 2a8bd0b1_1607533200000                             column=cf:address, timestamp=1638981085750, value=\xE6\xB7\xB1\xE5\x9C\xB35                                                                          
 2a8bd0b1_1607533200000                             column=cf:age, timestamp=1638981085750, value=24                                                                                                     
 2a8bd0b1_1607533200000                             column=cf:createTime, timestamp=1638981085750, value=2021-12-10 01:00:00                                                                             
 2a8bd0b1_1607533200000                             column=cf:id, timestamp=1638981085750, value=4                                                                                                       
 2a8bd0b1_1607533200000                             column=cf:name, timestamp=1638981085750, value=flink-sql03                                                                                           
 2a8bd0b1_1607533200000                             column=cf:updateDate, timestamp=1638981085750, value=2021-12-09 00:31:24                                                                             
 7fe8fbc2_1607443200000                             column=cf:address, timestamp=1638978975402, value=\xE6\xB7\xB1\xE5\x9C\xB32                                                                          
 7fe8fbc2_1607443200000                             column=cf:age, timestamp=1638978975402, value=21                                                                                                     
 7fe8fbc2_1607443200000                             column=cf:createTime, timestamp=1638978975402, value=2021-12-09 00:00:00                                                                             
 7fe8fbc2_1607443200000                             column=cf:id, timestamp=1638978975402, value=2                                                                                                       
 7fe8fbc2_1607443200000                             column=cf:name, timestamp=1638978975402, value=flink                                                                                                 
 7fe8fbc2_1607443200000                             column=cf:updateDate, timestamp=1638978975402, value=2021-12-08 23:56:14                                                                             
 86532b5a_1607356800000                             column=cf:address, timestamp=1638978130285, value=\xE6\xB7\xB1\xE5\x9C\xB3                                                                           
 86532b5a_1607356800000                             column=cf:age, timestamp=1638978130285, value=\x00\x00\x00\x14                                                                                       
 86532b5a_1607356800000                             column=cf:createTime, timestamp=1638978130285, value=2021-12-08 00:00:00                                                                             
 86532b5a_1607356800000                             column=cf:id, timestamp=1638978130285, value=\x00\x00\x00\x00\x00\x00\x00\x01                                                                        
 86532b5a_1607356800000                             column=cf:name, timestamp=1638978130285, value=hdfs                                                                                                  
 86532b5a_1607356800000                             column=cf:updateDate, timestamp=1638978130285, value=2021-12-08 23:42:08                                                                             
 a7fd7ded_1607619600000                             column=cf:address, timestamp=1638981129207, value=\xE6\xB7\xB1\xE5\x9C\xB35                                                                          
 a7fd7ded_1607619600000                             column=cf:age, timestamp=1638981129207, value=24                                                                                                     
 a7fd7ded_1607619600000                             column=cf:createTime, timestamp=1638981129207, value=2021-12-11 01:00:00                                                                             
 a7fd7ded_1607619600000                             column=cf:id, timestamp=1638981129207, value=4                                                                                                       
 a7fd7ded_1607619600000                             column=cf:name, timestamp=1638981129207, value=flink-sql03                                                                                           
 a7fd7ded_1607619600000                             column=cf:updateDate, timestamp=1638981129207, value=2021-12-09 00:32:07                                                                             
5 row(s)
Took 0.0306 seconds                                                                                                                                                                                      
hbase(main):110:0> 

7.代码读取hbase 程序

java 读取hbase 程序 https://blog.csdn.net/wudonglianga/article/details/121722396

8. 需要注意的是写入hbase 数据的时候int 类型的值需要转化为String 如下:

否则代码读取的时候会出现乱码:

  put.addColumn(Bytes.toBytes(cf), Bytes.toBytes("id"), Bytes.toBytes(String.valueOf(user.getId())));
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容