68、Spark SQL之Parquet数据源之合并元数据

合并元数据

如同ProtocolBuffer,Avro,Thrift一样,Parquet也是支持元数据合并的。用户可以在一开始就定义一个简单的元数据,然后随着业务需要,逐渐往元数据中添加更多的列。在这种情况下,用户可能会创建多个Parquet文件,有着多个不同的但是却互相兼容的元数据。Parquet数据源支持自动推断出这种情况,并且进行多个Parquet文件的元数据的合并。

因为元数据合并是一种相对耗时的操作,而且在大多数情况下不是一种必要的特性,从Spark 1.5.0版本开始,默认是关闭Parquet文件的自动合并元数据的特性的。可以通过以下两种方式开启Parquet数据源的自动合并元数据的特性:
1、读取Parquet文件时,将数据源的选项,mergeSchema,设置为true
2、使用SQLContext.setConf()方法,将spark.sql.parquet.mergeSchema参数设置为true

案例:合并学生的基本信息,和成绩信息的元数据
Java版本

public class ParquetMergeSchema {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setAppName("ParquetMergeSchemaJava").setMaster("local");
        JavaSparkContext sparkContext = new JavaSparkContext(conf);
        SQLContext sqlContext = new SQLContext(sparkContext);

        // 创建一个DataFrame,作为学生的基本信息,并写入一个parquet文件中
        List<String> studentWithNameAndAge = new ArrayList<String>();
        studentWithNameAndAge.add("zhaojun,18");
        studentWithNameAndAge.add("fengxiangbin,17");
        JavaRDD<String> studentWithNameAndAgeRDD = sparkContext.parallelize(studentWithNameAndAge, 2);
        JavaRDD<Row> studentWithNameAndAgeRowRDD = studentWithNameAndAgeRDD.map(new Function<String, Row>() {
            @Override
            public Row call(String v1) throws Exception {
                return RowFactory.create(v1.split(",")[0], Integer.parseInt(v1.split(",")[1]));
            }
        });
        List<StructField> fieldList = new ArrayList<StructField>();
        fieldList.add(DataTypes.createStructField("name", DataTypes.StringType, true));
        fieldList.add(DataTypes.createStructField("age", DataTypes.IntegerType, true));
        StructType structType = DataTypes.createStructType(fieldList);

        DataFrame studentWithNameAndAgeDF = sqlContext.createDataFrame(studentWithNameAndAgeRowRDD, structType);
        studentWithNameAndAgeDF.write().format("parquet").mode(SaveMode.Append).save("E:\\testdata\\sparksql\\student");

        // 创建第二个DataFrame,作为学生的成绩信息,并写入一个parquet文件中
        List<String> studentWithNameAndGrade = new ArrayList<String>();
        studentWithNameAndGrade.add("zhaoj,B");
        studentWithNameAndGrade.add("fengxiang,A");
        JavaRDD<String> studentWithNameAndGradeRDD = sparkContext.parallelize(studentWithNameAndGrade, 2);
        JavaRDD<Row> studentWithNameAndGradeRowRDD = studentWithNameAndGradeRDD.map(new Function<String, Row>() {
            @Override
            public Row call(String v1) throws Exception {
                return RowFactory.create(v1.split(",")[0], v1.split(",")[1]);
            }
        });
        fieldList = new ArrayList<StructField>();
        fieldList.add(DataTypes.createStructField("name", DataTypes.StringType, true));
        fieldList.add(DataTypes.createStructField("grade", DataTypes.StringType, true));
        structType = DataTypes.createStructType(fieldList);

        DataFrame studentWithNameAndGradeDF = sqlContext.createDataFrame(studentWithNameAndGradeRowRDD, structType);
        studentWithNameAndGradeDF.write().format("parquet").mode(SaveMode.Append).save("E:\\testdata\\sparksql\\student");


        // 首先,第一个DataFrame和第二个DataFrame的元数据肯定是不一样的吧
        // 一个是包含了name和age两个列,一个是包含了name和grade两个列
        // 所以, 这里期望的是,读取出来的表数据,自动合并两个文件的元数据,出现三个列,name、age、grade
        // 用mergeSchema的方式,读取students表中的数据,进行元数据的合并
        DataFrame df = sqlContext.read().option("mergeSchema", "true").parquet("E:\\testdata\\sparksql\\student");
        df.schema();
        df.show();
    }
}

Scala版本

object ParquetMergeSchema {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local").setAppName("ParquetPartitionDiscoveryScala")
    val sparkContext = new SparkContext(conf)
    val sqlContext = new SQLContext(sparkContext)

    import sqlContext.implicits._
    // 创建一个DataFrame,作为学生的基本信息,并写入一个parquet文件中
    val studentWithNameAndAge = Array(("Zhao Jun", 18),("Feng Xiangbin", 17))
    val studentWithNameAndAgeDF = sparkContext.parallelize(studentWithNameAndAge, 2).toDF("name", "age")
    studentWithNameAndAgeDF.write.format("parquet").mode(SaveMode.Append).save("E:\\testdata\\sparksql\\student_scala")

    // 创建第二个DataFrame,作为学生的成绩信息,并写入一个parquet文件中
    val studentWithNameAndGrade = Array(("Zhao Jun", "B"),("Feng Xiangbin", "A"))
    val studentWithNameAndGradeDF = sparkContext.parallelize(studentWithNameAndGrade, 2).toDF("name", "grade")
    studentWithNameAndGradeDF.write.format("parquet").mode(SaveMode.Append).save("E:\\testdata\\sparksql\\student_scala")

    // 首先,第一个DataFrame和第二个DataFrame的元数据肯定是不一样的吧
    // 一个是包含了name和age两个列,一个是包含了name和grade两个列
    // 所以, 这里期望的是,读取出来的表数据,自动合并两个文件的元数据,出现三个列,name、age、grade
    val df = sqlContext.read.option("mergeSchema", "true").load("E:\\testdata\\sparksql\\student_scala")
    df.schema
    df.show()
  }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容