十八世纪的偏微分方程(四)

一阶偏微分方程


在拉格朗日以前还没有系统研究过一阶偏微分方程,因为物理问题直接引出二阶偏微分方程,反而二阶先受到注意。人们只求解了几个特殊的一阶偏微分方程,除了全微分方程其他都比较好解。全微分方程即Pdx+Qdy+Rdz=0,P,Q,R是x,y,z的函数,这类方程如果能积分的话,就把z定义成x,y的函数。

1739年克莱罗发现如果左端是恰当微分,即如果存在函数u,使du=Pdx+Qdy+Rdz,那么有δP/δy=δQ/δx,δP/δz=δR/δz,δQ/δz=δR/δy(跟向量场Pi+Qj+Rk是保守向量场的判定方法是一样的),如果不是恰当微分,可以乘以积分因子\mu (x,y,z)得到恰当微分。克莱罗和达朗贝尔都给出了积分的充要条件,即

一般的两个自变量的一阶偏微分方程形如:f(x,y,z,p,q)=0,这里p=δz/δx,q=δz/δy,如果方程关于p,q是线性的称为线性偏微分方程,否则称为非线性的。以下粗体字为拉格朗日贡献的术语。拉格朗日把一阶非线性方程的解分类,任一包含两个任意常数的解V(x,y,z,a,b)=0是完全解或完全积分,令b=Φ(a)(Φ是任意的),我们得到一个单参数解族。当Φ(a)任意时,称该族的包络为通积分,当一个确定的Φ(a)被使用时,这个包络是通积分的一个特殊情况。完全积分中所有解的包络称为奇解奇积分)。完全积分不是唯一的,它们不能通过改变任意常数相互转换,但通过特殊情况和奇解,可以从任一完全积分得到另一完全积分给出的所有解。

1774年拉格朗日讨论了一阶偏微分方程的完全解、通解和奇解之间的关系,从f(x,y,z,a,Φ(a))=0及δV/δa=0中消去a得到通积分,从f(x,y,z,a,b)=0,δV/δa=0和δV/δb=0中消去a,b得到奇解。

拉格朗日首次给出了非线性一阶方程的一般理论。1772年他考察了自变量x,y和应变量z的一般一阶方程,改进并推广了欧拉早期的工作。他令方程为q-Q(x,y,z,p)=0,q是x,y,z,p的函数,再试图确定p作为x,y,z的函数,两个方程q-Q(x,y,z,p)=0和p-P(x,y,z)=0有单重无穷多个公共积分曲面(几何意义),拉格朗日从分析上讨论,表达式dz-pdx-qdy乘以适当因子M(x,y,z)变成N(x,y,z)=0的恰当微分dN,为此必须有δN/δz=M,δN/δx=-Mp,δN/δy=-Mq。在一系列代入后他要寻找一阶方程的解p=P,这个函数关于p的导数是线性的,其解包含任意常数a。求出后他再积分q-Q(x,y,z,p)=0和p-P(x,y,z,a)=0,求得了q-Q(x,y,z,p)=0一族∞^2个积分曲面,即求得了完全解。这是用解线性方程代替解非线性方程。

1779年拉格朗日给出了解线性一阶偏微分方程的方法,他考虑非齐次线性方程Pp+Qq=R(该式被称为拉格朗日方程)。这个方程与齐次偏微分方程P\frac{\partial f}{\partial x} +Q\frac{\partial f}{\partial y} +R\frac{\partial f}{\partial z}=0 密切相关,而齐次偏微分方程又与常微分方程组dx/P=dy/Q=dz/R相连,拉格朗日容易证明了:如u(x,y,z)=c是线性方程的一个解,那么f=u(x,y,z)是偏微分方程的一个解。如果f=u(x,y,z)和f=v(x,y,z)是偏微分方程的两个独立解,那么u=c1和v=c2是方程组的一个解;此外也可证明,当Φ是u,v的任意函数,f=Φ(u,v)也满足偏微分方程,Φ(u,v)=0是线性方程的通解。可以看出拉格朗日已经成功把一个关于x,y,z的任意一阶方程转化为联立常微分方程,但是他没有点明,而且后来解一阶偏微分方程时还忘记了这个方法。

1798年Lacroix说Paul Charpit(1784)把非线性和线性方程的方法相结合,将把任一f(x,y,z,p,q)=0转化为一个常微分方程组,但没有出版。雅可比希望出版这篇文章,但未能如愿,因此我们不知说法是否属实。现代教科书融合了拉格朗日1772年和1779年两篇论文的思想,把方法称为拉格朗日-沙比法(怎么听起来像骂拉格朗日)。这个方法是说解f(x,y,z,p,q)=0,必须解常微分方程组(f=0的特征方程组)


拉格朗日-沙比法

求出方程组的积分就可以得到解,再把解得的方程和f=0联立,解出p,q并代入dz=pdx+qdy,再积分求解。

拉格朗日的方法也称为柯西的特征方法,是因为这一方法适用于两个自变量的方程,1819年柯西把这一方法推广到n个变量。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容