Reading Note: Pelee: A Real-Time Object Detection System on Mobile Devices


title: "Reading Note: Pelee: A Real-Time Object Detection System on Mobile Devices"
category: ["Computer Vision"]
tag: ["Reading Note", "CNN", "Mobile Models", "Object Detection"]


TITLE: Pelee: A Real-Time Object Detection System on Mobile Devicesn

AUTHOR: Robert J. Wang, Xiang Li, Shuang Ao, Charles X. Ling

ASSOCIATION: University ofWestern Ontario

FROM: arXiv:1804.06882

CONTRIBUTION

  1. A variant of DenseNet architecture called PeleeNet for mobile devices is proposed.
  2. The network architecture of Single Shot MultiBox Detector (SSD) is optimized for speed acceleration and then combine it with PeleeNet.

METHOD

BUILDING BLOCKS

Two-Way Dense Layer. A 2-way dense layer is used to get different scales of receptive fields. One branch uses a small kernel size (3x3) to capture small-size objects. The other branch stacks two 3x3 convolution layers for larger objects. The structure is shown in the following figure.

Two-Way Dense Layer

Stem Block. This block is placed before the first dense layer for the sake of cost efficiency. This stem block can effectively improve the feature expression ability without adding computational cost too much. The structure is shown as follows.

Stem Block

Dynamic Number of Channels in Bottleneck Layer. The number of channels in the bottleneck layer varies according to the input shape to make sure the number of output channels does not exceed the number of its input channels.

Transition Layer without Compression. experiments show that the compression factor proposed by DenseNet hurts the feature expression so that the number of output channels is kept the same as the number of input channels in transition layers.

Composite Function. The post-activation (Convolution - Batch Normalization - Relu) is used for speed acceleration. For post-activation, all batch normalization layers can be merged with convolution layer at the inference stage. To compensate for the negative impact on accuracy caused by this change, a shallow and wide network structure is designed. In addition, a 1x1 convolution layer is added to the last dense block to get a stronger representational ability.

ARCHITECTURE

The framework of the work is illustrated in the following table.

PeleeNet Architecture

OPTIMIZATION FOR SSD

Feature Map Selection. 5 scale feature maps (19x19, 10x10, 5x5, 3x3, and 1x1) are selected. Larger resolution features are discarded for speed acceleration.

Residual Prediction Block. For each feature map used for detection, a residual block (ResBlock) is constructed before conducting prediction, shown in the following figure.

PeleeNet SSD

PERFORMANCE

The classification performance on ILSVRC2012 is shown in the following table.

ILSVRC2012

The detection performance on VOC2007 is shown in the following table.

VOC2007

The detection performance on COCO2015 is shown in the following table.

COCO

SOME IDEAS

From my own experince, DW convolution is not pruning friendly so that recently pruning methods, such as ThiNet and Net-Trim, works poorly on DW convolution. This work uses conventional convolutional layers, so maybe those pruning methods can play a role.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容

  • 第二十三回:闺蜜之间,唯有男人不能分享 第二十四回:世间所有相遇,都是久别重逢 杜蔚蔚端着装满凉白开的小酒壶,踩着...
    燕语叮咛阅读 542评论 0 2
  • 从你的全世界路过,晚安。
    王皓天阅读 160评论 0 1