Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
设状态为 f[i][j],表示根到节点(i,j)的最短路径,状态方程:
f[i][j] = min(f[i-1,j-1],f[i-1,j]) + tringal[i,j]
使用一维数组实现:
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int height = triangle.size();
if(height == 0){
return 0;
}
int [] minPath = new int[height+1];
List<Integer> layer = triangle.get(0);
minPath[0] = Integer.MAX_VALUE;
minPath[1] = layer.get(0);
int minPathValue = Integer.MAX_VALUE;
for(int i = 1; i<height; i++){
layer = triangle.get(i);
minPath[i+1] = Integer.MAX_VALUE;
for(int j=i+1; j>0; j--){
minPath[j] = Math.min(minPath[j-1], minPath[j]) + layer.get(j-1);
}
}
for(Integer i: minPath){
minPathValue = Math.min(minPathValue, i);
}
return minPathValue;
}
}