markdown中的矩阵表示

画矩阵需要用到特殊的语法

(1)画普通矩阵,不带括号的
\begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix}

\begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix}

(2)画带中括号的矩阵
\left[ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right]

\left[ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right]

(3) 画带大括号的矩阵
\left\{ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right\}

\left\{ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right\}

(4)矩阵前加个参数
A= \left\{ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right\}

A= \left\{ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right\}

(5)矩阵中间有省略号
//\cdots为水平方向的省略号
//\vdots为竖直方向的省略号
//\ddots为斜线方向的省略号

A= \left\{ \begin{matrix} a & b & \cdots & e\\ f & g & \cdots & j \\ \vdots & \vdots & \ddots & \vdots \\ p & q & \cdots & t \end{matrix} \right\}

A= \left\{ \begin{matrix} a & b & \cdots & e\\ f & g & \cdots & j \\ \vdots & \vdots & \ddots & \vdots \\ p & q & \cdots & t \end{matrix} \right\}

(6)矩阵中间加根横线
//array必须为array
//{cccc|c}中的c表示矩阵元素,可以控制|的位置
A= \left\{ \begin{array}{cccc|c} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{array} \right\}

A= \left\{ \begin{array}{cccc|c} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{array} \right\}
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • Cmd Markdown 公式指导手册 标签: Tutorial 2018-03-20 补档:收到很多小伙伴对本文...
    单程_min阅读 1,017评论 0 0
  • $ \LaTeX{} $历史 $\LaTeX{}$(/ˈlɑːtɛx/,常被读作/ˈlɑːtɛk/或/ˈleɪtɛ...
    大只若于阅读 5,637评论 0 5
  • 基础篇NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(...
    oyan99阅读 5,151评论 0 18
  • 声明!!!! 此文章的代码部分在简书中皆不能正常显示, 请去我的个人网站观看效果, 如果访问不了, 请翻墙试试! ...
    kagenZhao阅读 2,577评论 0 0
  • 进入,心流 1.早英文朗读 40min! 2.看了之前tom老师的直播 1小时! 3.重新录荔枝 1小时! 4.锻...
    橘子侠阅读 141评论 0 0