Array
Summary Ranges
vector<string> summaryRanges(vector<int>& nums) {
vector<string> res;
if (nums.empty()){
return res;
}
int nLength = nums.size() ,tail = 0;//use head & tail
for(int tail = 0; tail < nLength; ){
int head = nums[tail];//head can be set to nums[i] directly
while (tail + 1 != nLength && nums[tail + 1] == nums[tail] + 1)
tail += 1;
if(nums[tail] > head)
res.push_back(to_string(head) + "->" + to_string(nums[tail]));
else
res.push_back(to_string(head));
tail ++;
}
return res;
}
Rotate Array
翻转算法:28ms
void rotate(int nums[], int n, int k) {
k %= n;
reverse (nums,nums+n-k);
reverse (nums+n-k,nums+n);
reverse (nums,nums+n);
}
块交换算法:24ms ,improve 14%
inline void swap(vector<int>& nums,int head1, int head2, int moves){
int temp ;
while (moves--){
temp = nums[head1];
nums[head1++] = nums[head2];
nums[head2++] =temp;
}
}
void rotate(vector<int>& nums, int k) {
k %= nums.size();
if (nums.size() < 2 || k == 0 )
return ;
//0--left~~k~~right--end,move part is dicided by min(left,right)
//and the start of right need to be caculated
//p for the rotate point, be the last one in left
int left = nums.size() - k, right = k, p = left - 1;
while(left != right){
if (left < right){
swap(nums,p-left+1, p+right - left+1, left);
right -= left;
}else{//left > right
swap(nums,p-left+1, p+1, right);
left -= right;
}
}
//left == right
swap(nums, p-left+1, p+1, left);
}
RemoveElements
不能使用swap(如果111112移除1)
int removeElement(vector<int>& nums, int val) {
int m = 0, nNums = nums.size();
for (int i = 0; i < nNums;i++){
if(nums[i] != val)
nums[m++] = nums[i];
}
return m;
}
RemoveDeplicatesFromSortedArray
32ms
int removeDuplicates(vector<int>& nums) {
if (nums.size() < 2) return nums.size();
//nums[m] records the begaining of duplicates
int m = 1;
for (int i = 1;i < nums.size();i++){
if (nums[i] != nums[i-1])
nums[m++] = nums[i];
}
return m;
}
PlusOne
vector<int> plusOne(vector<int>& digits) {
for (auto r = digits.rbegin(); r != digits.rend(); r++){
if(*r <9){
*r += 1;
return digits;
}//esle
*r = 0;
}
//this means digits is 9...99
digits[0] = 1;
digits.push_back(0);
return digits;
}
Pascal'sTriangle: Ⅰ & Ⅱ
vector<vector<int>> generate(int numRows) {
vector<vector<int> > res;
for (int i = 0; i < numRows; i++){
vector<int> oneLine{1};
for (int j = 1; j < i; j++){//i>=2, numRows >=3
oneLine.push_back(res[i-1][j-1] + res[i-1][j]);
}
if (i != 0)
oneLine.push_back(1);
res.push_back(oneLine);
}
return res;
}
vector<int> getRow(int rowIndex) {
vector<int> res(rowIndex +1);
res[0] = 1;
for (int i = 1; i <= rowIndex; i++){
int mid = i >>1;
for (int j = mid; j >= 1; j--){
//mid-(mid-j)=i-j
res[i-j] = res[j]= res[j]+res[j-1];
}
res[i] = 1;//j>0
}
return res;
}
MoveZeroes
20ms
void moveZeroes(vector<int>& nums) {
int nNums = nums.size();
int index;
for (int i = 0; i < nNums; i++){
if(nums[i] != 0){
swap(nums[index],nums[i]);
index++;
}
}
}
MergeSortedArray
从nums1逆向merge。若m、n中有一个为0,对应数组已耗尽。若耗尽的是nums1,将nums2装到nums1中;若是nums1,则可略过
void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
m--;n--;
for (int i = m+n+1; i >= 0 ; i--){
if (m >=0 && n >=0){
if(nums1[m] > nums2[n])
nums1[i] = nums1[m--];
else
nums1[i] = nums2[n--];
}
else if (n >= 0){//m<0
while(n>=0) nums1[i--] = nums2[n--];
return;
}
else
return;
}
}
MajorityElement
将nNums替换nums.size()后,从20提升到了16ms。20%
int majorityElement(vector<int>& nums) {
int major = nums[0],nNums = nums.size();
short count = 1;
for (int i = 1; i < nNums;i++){
if (nums[i] == major)
count++;
else{
if(count >1)
count--;
else//count == 1,and count-- == 0
major = nums[i];
}
}
return major;
}
ContainsDuplicate Ⅰ & Ⅱ
36ms。如果不用unordered_map,使用int[],可以达到20ms,但是要数组长度无法设置。另外一种低效但简单地方法是set之后比较长度是否有缩短。
inline void hashSet(unordered_map<int,int>& map, int i ){
map[i>>5] |= 1<<(i&0x1f);
}
inline bool isInHash(unordered_map<int,int>& map, int i){
return map[i>>5] & (1<<(i&0x1f));
}
bool containsDuplicate(vector<int>& nums) {
auto nNums = nums.size();
unordered_map<int,int> map;
for(int i = 0; i < nNums; i++){
if(!isInHash(map,nums[i])){
hashSet(map,nums[i]);
}
else
return true;
}
return false;
}
尝试过使用queue,失败;int[],超时
bool containsNearbyDuplicate(vector<int>& nums, int k) {
int nNums = nums.size();
unordered_set<int> pipe;
for(int i = 0;i < nNums; i++){
if (i > k) pipe.erase(nums[i-k-1]);
if (!pipe.insert(nums[i]).second)
return true;//find
}
return false;
}
WordSearch
public:
bool exist(vector<vector<char>>& board, string word) {
if(board.size() == 0) return false;
I = board.size(), J = board[0].size();
for (int i = 0; i < I; i++){
for (int j = 0; j < J; j++){
if (isValid(board,word,i,j,0)) return true;
}
}
return false;
}
private:
int I,J;
bool isValid(vector<vector<char>>& board, string &word,int i, int j,int matchLen){
if (word.size() == matchLen)
return true;
if (i < 0 || j < 0 || i == I || j == J)
return false;
if (board[i][j] != word[matchLen++])
return false;
//matche a letter,forward
board[i][j] ^= 0xff;//no letter's ASCII would begin with 1
bool isvalid = isValid(board,word,i-1,j,matchLen)
||isValid(board,word,i+1,j,matchLen)
||isValid(board,word,i,j-1,matchLen)
||isValid(board,word,i,j+1,matchLen);
board[i][j] ^= 0xff;//recover
return isvalid;
}
UniquePaths Ⅰ & Ⅱ
int uniquePaths(int m, int n) {
int dp[n+1] {0}; dp[1] = 1;
for (int i = 1; i <= m; i++)//i starts at 1
for (int j = 1; j <= n; j++)
dp[j] += dp[j-1];//[i,j] = [i-1,j]+[i,j-1]
return dp[n];
}
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid.empty()) return 0;
//dp 添加了1个辅助行和列,元素比obstacle的下标有偏移1
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
int dp[n+1] {0}; dp[1] = !obstacleGrid[0][0];
for (int i = 0; i < m; i++)//i,j是obstacle的下标,不是dp的
for (int j = 0; j < n; j++){
if (obstacleGrid[i][j])
dp[j+1] = 0;
else dp[j+1] += dp[j];
}
return dp[n];
}
TwoSum
vector<int> twoSum(vector<int>& nums, int target) {
auto sortNums = nums;
int nNums = nums.size();
sort(sortNums.begin(),sortNums.end());
//这里不用for循环二分搜索,采用两段相向查询
int left = 0, right = nums.size()-1;
while (true){//一定有答案,所以略去判断
int sum = sortNums[left] + sortNums[right];
if (sum == target) break;
if (sum < target) left++;
else right--;
}
for (int i = 0; i < nNums; i++){
if (nums[i] == sortNums[left]){
left = i;
break;
}
}//逆向搜索,以免nums有重复值
for (int i = nNums-1; i >=0; i--){
if (nums[i] == sortNums[right]){
right =i;
break;
}
}
//left >right 时,swap(left,right)
if (left > right) { left^= right; right^= left; left^= right;}
return vector<int> {left+1,right+1};
}
Triangle
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
vector<int> dp(triangle[n-1]);
for (int i = n-2; i >= 0; i--){
for (int j = 0; j <= i; j++)
dp[j] = triangle[i][j] + min(dp[j],dp[j+1]) ;
}
return dp[0];
}
Subsets Ⅰ &Ⅱ
外循环为nums时更简洁。外循环为逐条子集的时候,似乎会更快,但是OJ的时间没有变化,故略去。8ms
vector<vector<int>> subsets(vector<int>& nums) {
sort(nums.begin(),nums.end());
int nNums = nums.size();
int nRes = (1<<nNums);
vector<vector<int> > res(nRes);
int tempI ;
for (int i = 0; i < nNums; i++){
for (int j = 0;j <nRes; j++){
if ((j>>i)&1)
res[j].push_back(nums[i]);
}
}
return res;
}
Ⅱ不能使用Ⅰ中的办法。12ms
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
sort(nums.begin(),nums.end());
int nNums = nums.size();
vector<vector<int>> subsets{{}};//不能省略,见nSub
vector<int> oneSub;
for (int i = 0;i < nNums; ){
int count = 1;
while (i+count < nNums && nums[i+count] == nums[i] )
count ++;
int nSub = subsets.size();
for (int j = 0; j < nSub; j++){
oneSub = subsets[j];
for (int k = 0; k < count; k++){
oneSub.push_back(nums[i]);
subsets.push_back(oneSub);
}
}
i += count;
}
return subsets;
}
SpiralMatrix Ⅰ & Ⅱ
CleanCode 第35题
vector<int> spiralOrder(vector<vector<int>>& matrix) {
vector<int> result;
if (!matrix.size() || !matrix[0].size()) return result;
int nrow = matrix.size(), ncol = matrix[0].size();
int row = 0,col = -1;//每一个循环假定从左方驶入
while (true){
int i ;
for (i = 0; i < ncol; i++)
result.push_back(matrix[row][++col]);
if (--nrow == 0) break;
for (i = 0; i < nrow; i++)
result.push_back(matrix[++row][col]);
if (--ncol == 0) break;
for (i = 0; i < ncol; i++)
result.push_back(matrix[row][--col]);
if (--nrow == 0) break;
for (i = 0; i < nrow; i++)
result.push_back(matrix[--row][col]);
if (--ncol == 0) break;
}
}
vector<vector<int>> generateMatrix(int n) {
vector<vector<int> > result(n,vector<int>(n));
if (n == 0) return result;
int row = 0, col = -1;
int walker = 1;
while (true){
for (int i = 0; i < n; i++)
result[row][++col] = walker++;
if (--n == 0) break;
for (int i = 0; i< n; i ++)
result[++row][col] = walker++;
for (int i = 0; i < n; i++)
result[row][--col] = walker++;
if (--n == 0) break;
for (int i = 0; i < n; i++)
result[--row][col] = walker++;
}
return result;
}
SortColors
注意,异或的swap不能作用于相同的数
void sortColors(vector<int>& nums) {
int left = 0, right = nums.size()-1;
for (int i = 0; i <= right; ){
switch (nums[i]){
case 0: {// if(nums[i] == 0) {//swap
swap(nums[i++],nums[left++]);
break;
}
case 2:{//else if ( nums[i] == 2)
swap(nums[i],nums[right--]);//右边没检查过,不能i++跳过
break;
}
default: i++;
}
}
}
SetMatrixZeroes
第二个for循环想调优一下,然并卵
if (!matrix.size() ||!matrix[0].size()) return ;
int nrow = matrix.size(), ncol = matrix[0].size();
bool setColOne = false;//第一列是否置0要排除来自行的干扰
for (int i = 0; i < nrow; i++){
if (!setColOne && !matrix[i][0]) setColOne = true;
for (int j = 1; j < ncol;j++){
if (!matrix[i][j]){
matrix[0][j] = 0;
matrix[i][0] = 0;
}
}
}
//逆序,因为信息在首行/列
for (int i = nrow-1; i >=0 ; i--){
bool tempRow0 = matrix[i][0] == 0;//for speed up
for (int j = ncol - 1; j >=1 ;j--){
if (tempRow0 || !matrix[0][j])//!matrix[i][0]
matrix[i][j] = 0;
}
if (setColOne) matrix[i][0] = 0;
}
}
SearchInsertPosition
最简单是用lower_bound。自己写一个二分搜索也一样。都是8ms
int searchInsert(vector<int>& nums, int target) {
return lower_bound(nums.begin(),nums.end(),target)- nums.begin();
}
int searchInsert(vector<int>& nums, int target) {
int nNums = nums.size();
if (!nNums) return 0;
if (nums[nNums-1] < target) return nNums;
int left = 0, right = nNums -1;
while (left < right){
int middle = left+right>>1;//(left>>1)+(right-left>>1)
if (nums[middle] < target)
left = middle+1;
else
right = middle;
}
//if target > nums[nNums-1], it has already been returned
return right;
}
SearchForARange
不想写二分搜索,直接用std
vector<int> searchRange(vector<int>& nums, int target) {
vector<int> result{-1,-1};
if (nums.size() && binary_search(nums.begin(),nums.end(),target)) {
result[0] = lower_bound(nums.begin(),nums.end(),target) - nums.begin();
result[1] = upper_bound(nums.begin(),nums.end(),target) - nums.begin()-1;
}
return result;
}