tensorflow中踩过的坑

静态和动态维度

TensorFlow: Shapes and dynamic dimensions一文中,对张量的静态和动态维度做了描述。

  • 使用tf.get_shape()获取静态维度
  • 使用tf.shape获取动态维度
    如果你的placeholder输入的维度都是固定的情况下,使用get_shape()。但是很多情况下,我们希望想训练得到的网络可以用于任意大小的图像,这时你的placeholder就的输入维度都是[None,None,None,color_dim]这样的,在这种情况下,后续网络中如果需要得到tensor的维度,则需要使用tf.shape。

tf.nn.conv2d和tf.layers.conv2d

tf.nn.conv2dtf.layers.conv2d都可以用来定义一个卷积层,但是两个函数又有所不同。我个人感觉
tf.layers.conv2d应该是在tf.nn.conv2d的基础上进行封装的,因为它的参数相对而言要简单很多,最主要的参数有如下:

  • 输入tensorinput
  • 滤波器的数量filters
  • stride
  • padding

而滤波器的初始化,则完全可以自身完成。

tf.nn.conv2d函数而言,主要的参数如下:

  • 输入tensorinput
  • 滤波器tensorfilter
  • stride
  • padding

主要区别就在于,使用tf.nn.conv2d的时候,用户需要自己初始化滤波器tensor,而不是自动初始化。除此之外,两者还有一个十分重要的区别:

  • tf.layers.conv2d在初始化滤波器的时候,只需要给出滤波器个数,其实也就是输出结果的featue map个数,也就是缺省认为输入函数的tensor的feature map 数量是已知的。
  • tf.nn.conv2d在初始化滤波器的时候,filter参数的维度为:[filter_height, filter_width, in_channels, out_channels],相当于显式的(in_chann)告知了输入tensor的feature map个数。

在定义u-net的时候,需要使用tf.slice函数取出一个tensor的一部分,虽然这个tensor的维度是(?, ?, ?, 512)维度,但是使用tf.slice以后,输出的tensor则变成了(?, ?, ?, ?)维度,继续将这样的一个tensor输入tf.layers.conv2d则会下面的错误:

The channel dimension of the inputs should be defined. Found `None`.

但是将这个tensor给tf.nn.conv2d则不会产生相同的错误,因为在定义filter的时候,定义了in_channels,相当于纠正了tf.slice的错误。

所以,在定义一些较为复杂网络graph的时候,最好还是使用tf.nn.conv2d,而不是使用tf.layers.conv2d

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352