import matplotlib.pyplot as plt
import numpy as np
class billiard_circle():
def init(self,x_0,y_0,vx_0,vy_0,N,dt,alpha):
self.x_0 = x_0
self.y_0 = y_0
self.vx_0 = vx_0
self.vy_0 = vy_0
self.N = N
self.dt = dt
self.alpha=alpha
def motion_calculate(self):
self.x = []
self.y = []
self.vx = []
self.vy = []
self.t = [0]
self.x.append(self.x_0)
self.y.append(self.y_0)
self.vx.append(self.vx_0)
self.vy.append(self.vy_0)
for i in range(1,self.N):
self.x.append(self.x[i - 1] + self.vx[i - 1]*self.dt)
self.y.append(self.y[i - 1] + self.vy[i - 1]*self.dt)
self.vx.append(self.vx[i - 1])
self.vy.append(self.vy[i - 1])
if (np.sqrt( self.x[i]2+(self.y[i]-self.alpha)2 ) > 1.0) and self.y[i]>self.alpha:
self.x[i],self.y[i] = self.correct('np.sqrt(x2+(y-self.alpha)2) < 1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])
self.vx[i],self.vy[i] = self.reflect1(self.x[i],self.y[i],self.vx[i - 1], self.vy[i - 1])
elif (np.sqrt( self.x[i]2+(self.y[i]+self.alpha)2 ) > 1.0) and self.y[i]<-self.alpha:
self.x[i],self.y[i] = self.correct('np.sqrt(x2+(y+self.alpha)2) < 1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])
self.vx[i],self.vy[i] = self.reflect2(self.x[i],self.y[i],self.vx[i - 1], self.vy[i - 1])
elif (self.x[i] < -1.0) and self.y[i]>-self.alpha and self.y[i]<self.alpha:
self.x[i],self.y[i] = self.correct('x>-1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])
self.vx[i] = - self.vx[i]
elif (self.x[i] > 1.0) and self.y[i]>-self.alpha and self.y[i]<self.alpha:
self.x[i],self.y[i] = self.correct('x<1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])
self.vx[i] = - self.vx[i]
self.t.append(self.t[i - 1] + self.dt)
return self.x, self.y
def correct(self,condition,x,y,vx,vy):
vx_c = vx/100.0
vy_c = vy/100.0
while eval(condition):
x = x + vx_c*self.dt
y = y + vy_c*self.dt
return x-vx_cself.dt,y-vy_cself.dt
def reflect1(self,x,y,vx,vy):
module = np.sqrt(x2+(y-self.alpha)2) ### normalization
x = x/module
y = (y-self.alpha)/module+self.alpha
v = np.sqrt(vx2+vy2)
cos1 = (vxx+vy(y-self.alpha))/v
cos2 = (vx(y-self.alpha)-vyx)/v
vt = -v*cos1
vc = v*cos2
vx_n = vtx+vc(y-self.alpha)
vy_n = vt(y-self.alpha)-vcx
return vx_n,vy_n
def reflect2(self,x,y,vx,vy):
module = np.sqrt(x2+(y+self.alpha)2) ### normalization
x = x/module
y = (y+self.alpha)/module-self.alpha
v = np.sqrt(vx2+vy2)
cos1 = (vxx+vy(y+self.alpha))/v
cos2 = (vx(y+self.alpha)-vyx)/v
vt = -v*cos1
vc = v*cos2
vx_n = vtx+vc(y+self.alpha)
vy_n = vt(y+self.alpha)-vcx
return vx_n,vy_n
def plot(self):
plt.figure(figsize = (8,8))
plt.xlim(-1,1)
plt.ylim(-1,1)
plt.xlabel('x')
plt.ylabel('y')
plt.title('Stadium billiard $\alpha$=0.01')
self.plot_boundary()
plt.plot(self.x,self.y,'y')
plt.savefig('chapter3_3.31.png',dpi = 144)
plt.show()
def plot_boundary(self):
theta = 0
x = []
y = []
while theta < np.pi:
x.append(np.cos(theta))
y.append(np.sin(theta)+0.01)
theta+= 0.01
plt.plot(x,y,'g.')
while theta > np.pi and theta< 2*np.pi:
x.append(np.cos(theta))
y.append(np.sin(theta)-0.01)
theta+= 0.01
plt.plot(x,y,'g.')
def phase_plot(self):
record_x = []
record_vx = []
for i in range(len(self.x)):
if (abs(self.y[i] - 0)<0.001):
record_vx.append(self.vx[i])
record_x.append(self.x[i])
return record_vx, record_x
plt.xlabel('x')
plt.ylabel(r'$v_x$')
plt.scatter(record_x,record_vx,s=1)
plt.savefig('chapter3_3.31_phasey=0.png', dpi= 144)
plt.show()
sub1=plt.subplot(221)
A=billiard_circle(0.2,0,1,0.6,500000,0.01,0)
A.motion_calculate()
vx,x=A.phase_plot()
sub1.scatter(x, vx,s=1)
plt.xlabel('x')
plt.ylabel('$v_x$')
sub1.set_title('$\alpha=0$')
plt.show()
sub2=plt.subplot(222)
A=billiard_circle(0.2,0,1,0.6,500000,0.01,0.001)
A.motion_calculate()
vx,x=A.phase_plot()
sub2.scatter(x, vx,s=1)
plt.xlabel('x')
plt.ylabel('$v_x$')
sub2.set_title('$\alpha=0.001$')
plt.show()
sub3=plt.subplot(223)
A=billiard_circle(0.2,0,1,0.6,500000,0.01,0.01)
A.motion_calculate()
vx,x=A.phase_plot()
sub3.scatter(x, vx,s=1)
plt.xlabel('x')
plt.ylabel('$v_x$')
sub3.set_title('$\alpha=0.01$')
plt.show()
sub4=plt.subplot(224)
A=billiard_circle(0.2,0,1,0.6,500000,0.01,0.1)
A.motion_calculate()
vx,x=A.phase_plot()
sub4.scatter(x, vx,s=1)
plt.xlabel('x')
plt.ylabel('$v_x$')
sub4.set_title('$\alpha=0.1$')
plt.show()