走马观花-LruCache

LruCache:

包名:android.support.v4.util

主要成员变量:

    private final LinkedHashMap<K, V> map;
    private int size;//当前缓存区的大小(根据该大小判断是否执行LRU算法)
    private int maxSize;//缓存区总大小

    private int putCount;//执行put()操作的次数
    private int createCount;//执行create的次数
    private int evictionCount;//
    private int hitCount;//get()操作时,通过key直接取到value的次数(key进行哈希映射)
    private int missCount;//get()操作时,通过key没有直接取到value的次数

构造方法:

    public LruCache(int maxSize) {
        if (maxSize <= 0) {
            throw new IllegalArgumentException("maxSize <= 0");
        }
        this.maxSize = maxSize;
        this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
    }

maxSize表示缓存中所能够存储的最大条目数。
对于LinkerHashMap的构造参数详解:

     public LinkedHashMap(int initialCapacity,
                             float loadFactor,
                             boolean accessOrder)

InitialCapacity:初始缓存大小
loadFactory:加载因子
accessOrder:false->按照插入顺序排序 true->按照访问顺序排序(get一个元素后,就将该元素取出来保存到链表的最后,实现最近最少调度算法)

既然内部采用了LinkedHashMap这种数据结构,就表示对数据的处理采用到了链表的get()、put()、remove()等方法:

put():

    /**
     * Caches {@code value} for {@code key}. The value is moved to the head of
     * the queue.
     * value被移动到队列的头部
     * @return the previous value mapped by {@code key}.
     * 返回key映射的值
     */
    public final V put(K key, V value) {
        //key或value为null都导致空指针
        if (key == null || value == null) {
            throw new NullPointerException("key == null || value == null");
        }

        V previous;
        synchronized (this) {
            //put计数自增
            putCount++;
            size += safeSizeOf(key, value);
            //返回上一次的value对应的大小,此时previous已经被value替换掉
            previous = map.put(key, value);
            //由于previous被移除了,故而size也要做对应的删减
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }
        }

        if (previous != null) {
            //需要重写,默认为空
            entryRemoved(false, key, previous, value);
        }

        trimToSize(maxSize);
        return previous;
    }

trimToSize(maxSize);默认maxSize为初始化时赋值,一般取值为Runtime.getRuntime().maxMemory/8

    public void trimToSize(int maxSize) {
        while (true) {
            K key;
            V value;
            synchronized (this) {
                if (size < 0 || (map.isEmpty() && size != 0)) {
                    throw new IllegalStateException(getClass().getName()
                            + ".sizeOf() is reporting inconsistent results!");
                }

                //如果当前缓存的大小小于缓存区总大小,直接返回
                if (size <= maxSize || map.isEmpty()) {
                    break;
                }

                //缓存区域不够,LRU算法移除头部的value
                Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
                key = toEvict.getKey();
                value = toEvict.getValue();
                map.remove(key);
                size -= safeSizeOf(key, value);
                //eviction次数加1
                evictionCount++;
            }
            entryRemoved(true, key, value, null);
        }
    }

以上是put()操作的过程:首先,根据key到缓存中找相应的value,找到,进行替换,并把size的只进行相应的改变。将新的value替换oldValue之后,size的值发生了改变,故而,要对缓存区域的大小是否能够容纳新的size做出判断,不能的话将map中的元素根据LRU算法进行移除。

get(K key):

  public final V get(K key) {
      if (key == null) {
          throw new NullPointerException("key == null");
      }

      V mapValue;
      //字节取到value
      synchronized (this) {
          mapValue = map.get(key);
          if (mapValue != null) {
              hitCount++;
              return mapValue;
          }
          missCount++;
      }

      /*
       * Attempt to create a value. This may take a long time, and the map
       * may be different when create() returns. If a conflicting value was
       * added to the map while create() was working, we leave that value in
       * the map and release the created value.
       */

      //create(key)如果不重写的话,直接返回null
      V createdValue = create(key);
      if (createdValue == null) {
          return null;
      }

      synchronized (this) {
          createCount++;
          mapValue = map.put(key, createdValue);
          //发生冲突
          if (mapValue != null) {
              // There was a conflict so undo that last put
              map.put(key, mapValue);
          } else {
              size += safeSizeOf(key, createdValue);
          }
      }

      if (mapValue != null) {
          entryRemoved(false, key, createdValue, mapValue);
          return mapValue;
      } else {
          trimToSize(maxSize);
          return createdValue;
      }
  }

remove(K key)


    /**
     * Removes the entry for {@code key} if it exists.
     *
     * @return the previous value mapped by {@code key}.
     */
    public final V remove(K key) {
        if (key == null) {
            throw new NullPointerException("key == null");
        }

        V previous;
        synchronized (this) {
            previous = map.remove(key);
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }
        }

        if (previous != null) {
            entryRemoved(false, key, previous, null);
        }

        return previous;
    }

remove()方法和put()方法大致是一样的。见put()方法分析。

LruCache采用LinkedHashMap数据结构,双链表的pre和next指针分别指向上一个和下一个node的地址,hash算法保证了存取操作的效率。LinkedHashMap的成员变量accessOrder保证了插入的规则,true是基于访问顺序,这保证了最近操作的元素存放在了链表的末尾,删除的元素都是最久时间未使用的。这种思想值的学习。

另外看一看accessOrder在LinkedHashMap中的作用:

 void afterNodeAccess(Node<K,V> e) { // move node to last
        LinkedHashMapEntry<K,V> last;
        //将链表的tail赋值给last
        if (accessOrder && (last = tail) != e) {
            //强转e,并给其设置before指针和after指针,分别为b和a
            LinkedHashMapEntry<K,V> p =
                (LinkedHashMapEntry<K,V>)e, b = p.before, a = p.after;
            p.after = null;
            //若节点e的before不存在,则e的next为链表的头部,因为我们的目标是把节点e断开,然后放到链表的尾部
            if (b == null)
                head = a;
            else
                b.after = a;
            //e已经断开,需要把e的before和after再次连接起来,形成一条链
            if (a != null)
                a.before = b;
            else
                last = b;
            if (last == null)
                head = p;
            else {
                p.before = last;
                last.after = p;
            }
            tail = p;
            ++modCount;
        }
    }
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容