学习总结

时间:2019.7.4
内容:初级题与中级题

分组
> plate <- as.data.frame(plate)
> e$plate <- plate###将plate加入e中成为plate列
> e1 <- e[e$plate=='0048']
> class(e1)
[1] "character"
> dim(e1) <- c(384,3)
> class(e1)
[1] "matrix"
> e2 <- e[e$plate=='0049']
> dim(e2) <- c(384,3)
> e1 <- e1[,-2]
> e2 <- e2[,-2]
> e1 <- as.numeric(e1)
> dim(e1 ) <- c(384,2)
> class(e1[,1])
[1] "numeric"
> colnames(e1) <- c('MBases','plate')
> e2 <- as.numeric(e2)
> dim(e2) <- c(384,2)
> colnames(e2) <- c('MBases','plate')
频数图
> hist(e1[,1])
image.png
> hist(e2[,1])
image.png
使用ggplot2画图
箱图
library(ggplot2)
class(e1)
e1 <- as.data.frame(e1)
e2 <- as.data.frame(e2)
> ggplot(e1,aes(x=plate,y=MBases))+geom_boxplot()
> ggplot(e2,aes(x=plate,y=MBases))+geom_boxplot()
image.png
image.png
频数图
> ggplot(e1,aes(x=MBases))+geom_histogram(bins = 40,color="blue")
> ggplot(e2,aes(x=MBases))+geom_histogram(bins = 40,color="blue")
image.png
> ggplot(e2,aes(x=MBases))+geom_histogram(bins = 40,color="blue")
image.png
密度图
> ggplot(e1,aes(x=MBases))+geom_density()
image.png
> ggplot(e2,aes(x=MBases))+geom_density()
image.png
使用ggpubr作图
library(ggpubr)
箱图
> ggboxplot(e1,x = 'plate',y = 'MBases')
image.png
> ggboxplot(e2,x = 'plate',y = 'MBases')
image.png
频数图
> gghistogram(e1,x='MBases',bins=30)
image.png
> gghistogram(e2,x='MBases',bins=30)
image.png
密度图
> ggdensity(e1,x='MBases')
image.png
> ggdensity(e2,x='MBases')
image.png
随机取384个MBases信息,跟前面的两个plate的信息组合成新的数据框,第一列是分组,第二列是MBases,总共是384*3行数据。
> a1 <- e$MBases[1:384]
> a2 <- e$Title[1:384]
> a <- data.frame(a1,a2)
> a$plate <- as.data.frame(plate[,1][1:384])
> colnames(a) <- c('MBases','Title','plate')

中级题

作业 1

根据R包org.Hs.eg.db找到下面ensembl 基因ID 对应的基因名(symbol)

> g2s <- toTable(org.Hs.egSYMBOL)
> g2e <- toTable(org.Hs.egENSEMBL)
> ensemble_id <- c('ENSG00000000003.13','ENSG00000000005.5','ENSG00000000419.11','ENSG00000000457.12','ENSG00000000460.15','ENSG00000000938.11')
> #批量取基因名
> library(stringr)
> unlist(str_split(ensemble_id,'[.]'))
 [1] "ENSG00000000003" "13"              "ENSG00000000005" "5"              
 [5] "ENSG00000000419" "11"              "ENSG00000000457" "12"             
 [9] "ENSG00000000460" "15"              "ENSG00000000938" "11"       
> tmp <- unlist(str_split(ensemble_id,'[.]',simplify = T))###simplify = T 此参数生成为矩阵
image.png
> class(unlist(str_split(ensemble_id,'[.]',simplify = T)))
[1] "matrix"
> ensemble_id <- tmp[,1]
> ensembl_id <- as.data.frame(ensemble_id)
image.png
> colnames(ensembl_id) <- 'ensembl_id'
> merge1 <- merge(x=ensembl_id,y=g2e,by='ensembl_id')
image.png
> merge2 <- merge(x=merge1,y=g2s,by='gene_id')
image.png
作业 2

根据R包hgu133a.db找到下面探针对应的基因名(symbol)

> tmp <- c('1053_at','117_at','121_at','1255_g_at','1316_at','1320_at','1405_i_at','1431_at','1438_at','1487_at','1494_f_at','1598_g_at','160020_at','1729_at','177_at')
> probe_id <- as.data.frame(tmp)
> View(probe_id)
> colnames(probe_id) <- 'probe_id'
> View(probe_id)
image.png
> a <- toTable(hgu133aSYMBOL)
> merge <- merge(x=probe_id,y=a,by='probe_id')
image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容

  • 1. MongoDB 简介 MongoDB是一个可扩展的高性能,开源,模式自由,面向文档的NoSQL,基于分布式文...
    rhlp阅读 1,115评论 0 3
  • 时间:2017.9.3内容:初级10 个题目:http://www.bio-info-trainee.com/37...
    桃浪桃浪阅读 244评论 0 1
  • MATLAB基本数据类型 双精度/单精度/整形 数据的范围 务必注意溢出的问题。 函数 类型检查 class is...
    hainingwyx阅读 5,673评论 0 6
  • 一. 为什么使用缓存 如图1,为了快速应对早期的业务快速发展,我们架设一个超级简单的Web服务,只有一台应用服务器...
    大头8086阅读 2,418评论 0 5
  • 经过一段时间的学习,也对数据库有了一些认识。 数据库基本是由表,关系,操作组成;对于初学者首先要学的: 1.数据库...
    imtcf阅读 877评论 0 0