Tensorflow set_shape()和reshape()的区别

https://stackoverflow.com/questions/35451948/clarification-on-tf-tensor-set-shape

I have an image that is 478 x 717 x 3 = 1028178 pixels, with a rank of 1. I verified it by calling tf.shape and tf.rank. When I call image.set_shape([478, 717, 3]), it throws the following error.

"Shapes %s and %s must have the same rank" % (self, other))

ValueError: Shapes (?,) and (478, 717, 3) must have the same rank

I tested again by first casting to 1028178, but the error still exists.

ValueError: Shapes (1028178,) and (478, 717, 3) must have the same rank

Well, that does make sense because one is of rank 1 and the other is of rank 3. However, why is it necessary to throw an error, as the total number of pixels still match.

I could of course use tf.reshape and it works, but I think that's not optimal.

As stated on the TensorFlow FAQ

What is the difference between x.set_shape() and x = tf.reshape(x)?

The tf.Tensor.set_shape() method updates the static shape of a Tensor

  object, and it is typically used to provide additional shape

  information when this cannot be inferred directly. It does not change

  the dynamic shape of the tensor.

The tf.reshape() operation creates a new tensor with a different dynamic shape.

      Creating a new tensor involves memory allocation and that could potentially be more costly when more training examples are involved. Is this by design, or am I missing something here?


     As far as I know (and I wrote that code), there isn't a bug inTensor.set_shape(). I think the misunderstanding stems from the confusing name of that method.

To elaborate on theFAQ entry you quoted,Tensor.set_shape()is a pure-Python function thatimprovesthe shape information for a giventf.Tensorobject. By "improves", I mean "makes more specific".

Therefore, when you have a Tensor object t with shape(?,), that is a one-dimensional tensor of unknown length. You can call t.set_shape((1028178,)), and then t will have shape(1028178,) when you call t.get_shape(). This doesn't affect the underlying storage, or indeed anything o n the backend: it merely means that subsequent shape inference usingtcan rely on the assertion that it is a vector of length 1028178.

If t has shape(?,), a call to t.set_shape((478, 717, 3))will fail, because TensorFlow already knows thattis a vector, so it cannot have shape(478, 717, 3). If you want to make a new Tensor with that shape from the contents oft, you can use reshaped_t = tf.reshape(t, (478, 717, 3)). This creates a new tf.Tensorobject in Python; the actual implementation of tf.reshape() does this using a shallow copy of the tensor buffer, so it is inexpensive in practice.

One analogy is that Tensor.set_shape() is like a run-time cast in an object-oriented language like Java. For example, if you have a pointer to an Object but know that, in fact, it is aString, you might do the cast(String) obj in order to pass obj to a method that expects a String argument. However, if you have a Strings and try to cast it to a java.util.Vector, the compiler will give you an error, because these two types are unrelated.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,315评论 0 10
  • 太阳东升西落,宇宙古有定则。 目标是人生的指路灯,不管遇到什么困难,都可以有一个前进的方向。不被磨灭也不被打败。 ...
    与洛阅读 303评论 1 2
  • 姓名:周玉霞 六项精进:327期学员 公司:温州易道伟业企业管理咨询有限公司 地点:温州市龙湾区蒲州街道158公寓...
    Anne玉阅读 67评论 0 0
  • 最近好像每个人都在谈论脱欧的事情,每个人都在指点江山,讨论其的逻辑以及对今后的影响,但其实大多都是隔江观火,更有看...
    lizzyu阅读 330评论 0 1