子串检测|KMP算法

-空框架

#include<iostream>

#define maxn 1000+5
using namespace std; 

char s[maxn];
char p[maxn];

int Next[maxn];

void getNext(){};
int KMP(){};

int main(){
    while(~scanf("%s",s)){
        if(s[0]=='#')   break;
        scanf("%s",p);
    }
    
    return 0;
}

index|暴力检测方法

int violentMatch(const char s[],const char p[]) {
    int slen = strlen(s);
    int plen = strlen(p);

    int i=0;
    int j=0;

    while(i<slen&&j<plen) {
        if(s[i]==p[j]) {
            i++;
            j++;
        } 
        else {
            i = i-(j-1);
            j = 0;
        }
    }
    
    if(j == plen)
        return i-j;
    else return -1;
}

cout<<violentMatch(s,p)<<endl;

Paste_Image.png

举个例子,如果给定文本串S“BBC ABCDAB ABCDABCDABDE”,和模式串P“ABCDABD”,现在要拿模式串P去跟文本串S匹配,整个过程如下所示:
1. S[0]为B,P[0]为A,不匹配,执行第②条指令:“如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0”,S[1]跟P[0]匹配,相当于模式串要往右移动一位(i=1,j=0)


2. S[1]跟P[0]还是不匹配,继续执行第②条指令:“如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0”,S[2]跟P[0]匹配(i=2,j=0),从而模式串不断的向右移动一位(不断的执行“令i = i - (j - 1),j = 0”,i从2变到4,j一直为0)

3. 直到S[4]跟P[0]匹配成功(i=4,j=0),此时按照上面的暴力匹配算法的思路,转而执行第①条指令:“如果当前字符匹配成功(即S[i] == P[j]),则i++,j++”,可得S[i]为S[5],P[j]为P[1],即接下来S[5]跟P[1]匹配(i=5,j=1)

4. S[5]跟P[1]匹配成功,继续执行第①条指令:“如果当前字符匹配成功(即S[i] == P[j]),则i++,j++”,得到S[6]跟P[2]匹配(i=6,j=2),如此进行下去

5. 直到S[10]为空格字符,P[6]为字符D(i=10,j=6),因为不匹配,重新执行第②条指令:“如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0”,相当于S[5]跟P[0]匹配(i=5,j=0)

6. 至此,我们可以看到,如果按照暴力匹配算法的思路,尽管之前文本串和模式串已经分别匹配到了S[9]、P[5],但因为S[10]跟P[6]不匹配,所以文本串回溯到S[5],模式串回溯到P[0],从而让S[5]跟P[0]匹配。

而S[5]肯定跟P[0]失配。为什么呢?因为在之前第4步匹配中,我们已经得知S[5] = P[1] = B,而P[0] = A,即P[1] != P[0],故S[5]必定不等于P[0],所以回溯过去必然会导致失配。那有没有一种算法,让i 不往回退,只需要移动j 即可呢?
答案是肯定的。这种算法就是本文的主旨KMP算法,它利用之前已经部分匹配这个有效信息,保持i 不回溯,通过修改j 的位置,让模式串尽量地移动到有效的位置。

getNext

void getNext(const char p[],int next[]) {
    int plen = strlen(p);
    next[0]=-1;
    int k =-1;
    int j=0;
    while(j<plen-1){
        //k表示前缀  j表示后缀
        if(k == -1||p[j]==p[k]){
            ++k;
            ++j;
            if(p[j]!=p[k])
                next[j] = k;
            else
                next[j] = next[k];
        } 
        else
        {
            k = next[k];
        }
    }
};

KMP

int KMP(const char s[],const char p[]) {
    int i=0;
    int j=0;
    int slen = strlen(s);
    int plen = strlen(p);
    while(i<slen&&j<plen){
        if(j==-1||s[i]==p[j]){
            i++;
            j++;
        }
        else{
            j = Next[j];
        }
    }
    
    if(j==plen)
        return i-j;
    else
        return -1;
};
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

友情链接更多精彩内容