Push,指的是Flume主动push数据给Spark Streaming。
Pull,指的是Spark Streaming主动从Flume拉取数据。
Flume Push
<!-- Spark Streaming 整合 Flume -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
本地测试
$ vim flume-push-streaming.conf
simple-agent.sources = netcat-source
simple-agent.channels = memory-channel
simple-agent.sinks = avro-sink
simple-agent.sources.netcat-source.type = netcat
simple-agent.sources.netcat-source.bind = host000
simple-agent.sources.netcat-source.port = 9999
simple-agent.channels.memory-channel.type = memory
simple-agent.sinks.avro-sink.type = avro
simple-agent.sinks.avro-sink.hostname = 192.168.1.100
simple-agent.sinks.avro-sink.port = 10000
simple-agent.sources.netcat-source.channels = memory-channel
simple-agent.sinks.avro-sink.channel = memory-channel
import org.apache.spark.SparkConf
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* push方式
*/
object FlumePushWordCount {
def main(args: Array[String]): Unit = {
if (args.length != 2) { // 写活,从运行参数中读取hostname和port
System.err.println("Usage: FlumePushWordCount <hostname> <port>")
System.exit(1)
}
val conf = new SparkConf()
.setMaster("local[2]")
.setAppName("FlumePushWordCount")
.set("spark.driver.host", "localhost")
val ssc = new StreamingContext(conf, Seconds(5))
// 从Flume接收数据
val flumeStream = FlumeUtils.createStream(ssc, args(0), args(1).toInt)
flumeStream.map(x => new String(x.event.getBody.array()).trim)
.flatMap(_.split(" "))
.map((_,1))
.reduceByKey(_+_)
.print()
ssc.start()
ssc.awaitTermination()
}
}
1. 运行本地代码,运行时参数加入0.0.0.0 10000
2. $ flume-ng agent \
--name simple-agent \
--conf $FLUME_HOME/conf \
--conf-file /home/user000/confs/flume_conf/flume-push-streaming.conf \
-Dflume.root.logger=INFO,console
3. $ telnet host000 9999
服务器测试
修改代码
// .setMaster("local[2]")
// .setAppName("FlumePushWordCount")
// .set("spark.driver.host", "localhost")
$ mvn clean package -DskipTests
$ scp spark-learning-1.0-SNAPSHOT.jar user000@host000:~/jars
修改flume配置
simple-agent.sinks.avro-sink.hostname = host000
运行
// 有--packages需要联网
$ spark-submit --master local[2] \
--class FlumePushWordCount \
--packages org.apache.spark:spark-streaming-flume_2.11:2.1.0 \
~/jars/spark-learning-1.0-SNAPSHOT.jar host000 10000
$ flume-ng agent \
--name simple-agent \
--conf $FLUME_HOME/conf \
--conf-file /home/user000/confs/flume_conf/flume-push-streaming.conf \
-Dflume.root.logger=INFO,console
$ telnet host000 9999
Flume Pull
<!-- Scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- Spark Streaming整合Flume Pull方式 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume-sink_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- 依赖的工具包 -->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.5</version>
</dependency>
本地测试
$ vim flume_pull_streaming.conf
simple-agent.sources = netcat-source
simple-agent.channels = memory-channel
simple-agent.sinks = spark-sink
simple-agent.sources.netcat-source.type = netcat
simple-agent.sources.netcat-source.bind = host000
simple-agent.sources.netcat-source.port = 9999
simple-agent.channels.memory-channel.type = memory
simple-agent.sinks.spark-sink.type = org.apache.spark.streaming.flume.sink.SparkSink
simple-agent.sinks.spark-sink.hostname = host000
simple-agent.sinks.spark-sink.port = 10000
simple-agent.sources.netcat-source.channels = memory-channel
simple-agent.sinks.spark-sink.channel = memory-channel
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.flume.FlumeUtils
/**
* pull
*/
object FlumePullWordCount {
def main(args: Array[String]): Unit = {
if (args.length != 2) {
System.err.println("Usage: FlumePushWordCount <hostname> <port>")
System.exit(1)
}
val conf = new SparkConf()
.setMaster("local[2]")
.setAppName("FlumePullWordCount")
.set("spark.driver.host", "localhost")
val ssc = new StreamingContext(conf, Seconds(5))
// 与Push只有 FlumeUtils.createPollingStream 这一点不同,然后就变成了主动pull数据
val flumeStream = FlumeUtils.createPollingStream(ssc, args(0), args(1).toInt)
flumeStream.map(x => new String(x.event.getBody.array()).trim)
.flatMap(_.split(" "))
.map((_,1))
.reduceByKey(_+_)
.print()
ssc.start()
ssc.awaitTermination()
}
}
运行
$ flume-ng agent \
--name simple-agent \
--conf $FLUME_HOME/conf \
--conf-file /home/user000/confs/flume_conf/flume_pull_streaming.conf \
-Dflume.root.logger=INFO,console
$ 运行本地代码,加入参数host000 10000
$ telnet host000 9999
服务器测试
修改代码
// .setMaster("local[2]")
// .setAppName("FlumePullWordCount")
// .set("spark.driver.host", "localhost")
$ mvn clean package -DskipTests
$ scp spark-learning-1.0-SNAPSHOT.jar user000@host000:~/jars
运行
$ flume-ng agent \
--name simple-agent \
--conf $FLUME_HOME/conf \
--conf-file /home/user000/confs/flume_conf/flume_pull_streaming.conf \
-Dflume.root.logger=INFO,console
$ spark-submit --master local[2] \
--class FlumePullWordCount \
--packages org.apache.spark:spark-streaming-flume_2.11:2.1.0 \
~/jars/spark-learning-1.0-SNAPSHOT.jar host000 10000
$ telnet host000 9999