问题描述 :
在使用图的邻接矩阵ADT的基础上,设计Dijkstra算法,用以解决单源最短路径问题,并以文本形式输出从源点到其余各个顶点的路径以及路径长度。将此算法加入到邻接矩阵ADT中,在邻接矩阵ADT中提供一个公有的成员函数Dijkstra。
提示:
(1)单源最短路径问题:已知有向带权图(简称有向网)G=(V,E),找出从某个源点s∈V到V中其余各顶点的最短路径。
(2)目的: 设一有向图G=(V, E),已知各边的权值,以某指定点v0为源点,求从v0到图的其余各点的最短路径。限定各边上的权值大于或等于0。应按路径“长度” 递增的次序,逐步产生最短路径。
(3)Dijkstra算法的基本步骤:设V0是起始源点,U = 已求得最短路径终点集合。V-U = 未确定最短路径的顶点的集合,初始时 U ={V0}。
1)“长度”最短的最短路径是边数为1的长度最小的路径。
2)下一条“长度”最短的路径:
① Vi V - U ,先求出V0 到Vi 中间只经 U 中结点的最短路径;
② 上述最短路径中长度最小者即为下一条长度最短的路径;
③ 将所求最短路径的终点加入U 中;
3)重复2)直到求出所有的最短路径。
(4)实现方法:
1)图用带权邻接矩阵存储ad[][];
2)数组dist[]存放当前找到的从源点V0到每个终点的最短路径长度,其初态为图中直接路径权值;
3)数组pre[]表示从V0到各终点的最短路径上,此顶点的前一顶点的序号;若从V0到某终点无路径,则用0作为其前一顶点的序号。
参考函数原型:
(1)//Dijkstra算法(成员函数)
template<class TypeOfVer, class TypeOfEdge>
bool adjmatrix_graph<TypeOfVer, TypeOfEdge>::Dijkstra( int u, TypeOfEdge *dist, int *pre); // u:源点的位序
(2)辅助函数
//最短路径输出(用户函数)
template<class TypeOfVer, class TypeOfEdge>
void searchPath(TypeOfVer *ver, int *prev, TypeOfEdge *dist, int v, int u); // ver:输入的顶点集 v:源点的位序 u:终点的位序
输入说明 :
第一行:图的类型
第二行:顶点数
第三行:顶点集
第四行:无边标记
第五行:边数
第六行:边集
第七行:权集
第八行:源点位序
输出说明 :
第一行:顶点集
空行
第二行:图的邻接矩阵
空行
第三行:dist数组的初值
第四行:pre数组的初值
空行
第五行:dist数组的值
第六行:pre数组的值
空行
第七行:源点到其余各顶点的最短路径及最短路径长度(输出格式参见测试数据)
输入范例 :
DN
7
V1 V2 V3 V4 V5 V6 V7
99
10
0 1
0 2
0 4
0 6
1 5
1 6
2 3
3 4
4 5
5 6
13 8 30 32 9 7 5 6 2 17
0
输出范例 :
V1 V2 V3 V4 V5 V6 V7
99 13 8 99 30 99 32
99 99 99 99 99 9 7
99 99 99 5 99 99 99
99 99 99 99 6 99 99
99 99 99 99 99 2 99
99 99 99 99 99 99 17
99 99 99 99 99 99 99
0 13 8 99 30 99 32
0 1 1 0 1 0 1
0 13 8 13 19 21 20
0 1 1 3 4 5 2
<(0,V1),(1,V2)>,13
<(0,V1),(2,V3)>,8
<(0,V1),(2,V3),(3,V4)>,13
<(0,V1),(2,V3),(3,V4),(4,V5)>,19
<(0,V1),(2,V3),(3,V4),(4,V5),(5,V6)>,21
<(0,V1),(1,V2),(6,V7)>,20
#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
template <class TypeOfVer, class TypeOfEdge>
class adjmatrix_graph {
private:
int Vers; //顶点数
int Edges; //边数
vector<vector<TypeOfEdge>> edge; //存放邻接矩阵(TypeOfEdge表示顶点关系类型。对于无权图,用1或0,表示相邻否;对于带权图,则为权值类型)
vector<TypeOfVer> ver; //存放结点值
TypeOfEdge noEdge; //邻接矩阵中的∞的表示值
string GraphKind; //图的种类标志
void DFS(int u, int& num, vector<int>& visited) //DFS遍历(递归部分)
{
if (num != Vers)cout << "->";
cout << ver[u];
if (num == 0)return;
visited[u] = 1;
num--;
if (num == 0)return;
int v, w;
GetFirstAdjVex(u, v);
while (v != -1)
{
if (visited[v])
{
GetNextAdjVex(u, v, w);
v = w;
}
else DFS(v, num, visited);
}
}
bool CheckRoute(int u, int targe, vector<int>& visited) //检查两个结点之间是否有路径存在(递归部分,私有成员函数)
{
visited[u] = 1;
if (visited[targe])return true;
int v, w;
GetFirstAdjVex(u, v);
while (v != -1)
{
if (visited[v])
{
GetNextAdjVex(u, v, w);
v = w;
}
else CheckRoute(v, targe, visited);
}
if (visited[targe])return true;
else return false;
}
public:
//构造函数构造一个只有结点没有边的图。4个参数的含义:图的类型、结点数、结点值和邻接矩阵中表示结点间没有边的标记(无权图:0,有权图:输入参数定)
adjmatrix_graph(string& kd, int vSize, vector<TypeOfVer>& d, TypeOfEdge noEdgeFlag)
{
GraphKind = kd;
Vers = vSize;
ver = d;
noEdge = noEdgeFlag;
edge.resize(vSize);
for (int i = 0;i < vSize;i++)
edge[i].resize(vSize);
fill(edge.begin(), edge.end(), noEdge);
}
//构造函数构造一个无权图。5个参数的含义:图的类型、结点数、边数、结点集和边集
adjmatrix_graph(string& kd, int vSize, int eSize, vector<TypeOfVer>& d, vector<vector<int>>& e)
{
GraphKind = kd;
Vers = vSize;
ver = d;
Edges = eSize;
noEdge = 0;
edge.resize(vSize);
for (int i = 0;i < vSize;i++)
edge[i].resize(vSize);
for (int i = 0;i < vSize;i++)
{
for (int j = 0;j < vSize;j++)
{
edge[i][j] = e[i][j];
}
}
if (GraphKind == "UDG")
{
for (int i = 0;i < vSize;i++)
for (int j = 0;j < vSize;j++)
if (edge[i][j] != noEdge)
edge[j][i] = edge[i][j];
}
}
//构造函数构造一个有权图。7个参数的含义:图的类型、结点数、边数、无边标记、结点集、边集、权集
adjmatrix_graph(string& kd, int vSize, int eSize, TypeOfEdge noEdgeFlag, vector<TypeOfVer>& d, vector<vector<int>>& e, vector<TypeOfEdge>& w)
{
this->GraphKind = kd;
Vers = vSize;
ver = d;
noEdge = noEdgeFlag;
Edges = eSize;
edge.resize(vSize);
for (int i = 0;i < vSize;i++)
edge[i].resize(vSize);
int count = 0;
for (int i = 0;i < vSize;i++)
{
for (int j = 0;j < vSize;j++)
{
if (e[i][j] != 0)
{
edge[i][j] = w[count++];
}
else edge[i][j] = noEdge;
}
}
if (GraphKind == "UDN")
{
for (int i = 0;i < vSize;i++)
for (int j = 0;j < vSize;j++)
if (edge[i][j] != noEdge)
edge[j][i] = edge[i][j];
}
e.clear();
w.clear();
}
~adjmatrix_graph() //析构函数
{
}
bool GraphisEmpty() { return Vers == 0; } //判断图空否
string GetGraphKind() { return GraphKind; }
int GetVerNum() { return Vers; } //取得当前顶点数
int GetEdgeNum() { return Edges; } //取得当前边数
TypeOfEdge GetnoEdge() { return noEdge; }
bool Print() //输出邻接矩阵
{
if (GraphisEmpty())return false;
cout << GraphKind << endl;
for (int i = 0;i < Vers - 1;i++)
cout << ver[i] << " ";
cout << ver[Vers - 1] << endl << endl;
for (int i = 0;i < Vers;i++)
{
for (int j = 0;j < Vers;j++)
{
cout << edge[i][j] << " ";
}
cout << endl;
}
return true;
}
bool PrintMatrix() //输出邻接矩阵
{
if (GraphisEmpty())return false;
for (int i = 0;i < Vers;i++)
{
for (int j = 0;j < Vers;j++)
{
cout << edge[i][j] << " ";
}
cout << endl;
}
return true;
}
bool PrintGraphKind()
{
if (GraphisEmpty())return false;
cout << GraphKind << endl;
return true;
}
bool PrintVers()
{
if (GraphisEmpty())return false;
cout << Vers << endl;
return true;
}
bool PrintVer()
{
if (GraphisEmpty())return false;
cout << ver[0];
for (int i = 1;i < Vers;i++)
cout << " " << ver[i];
cout << endl;
return true;
}
bool PrintEdges()
{
if (GraphisEmpty())return false;
cout << Edges << endl;;
return true;
}
bool GetVer(int u, TypeOfVer& data) //取得G中指定顶点的值
{
if (u >= Vers)return false;
data = ver[u];
return true;
}
vector<TypeOfVer> GetVer() { return ver; }
int GetFirstAdjVex(int u, int& v) //返回G中指定顶点u的第一个邻接顶点的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1
{
if (u >= Vers)return v = -1;
v = -1;
for (int i = 0;i < Vers;i++)
{
if (edge[u][i] != noEdge) {
v = i;
break;
}
}
return v;
}
int GetNextAdjVex(int u, int v, int& w) //返回G中指定顶点u的下一个邻接顶点(相对于v)的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1
{
if (u >= Vers || v >= Vers)return w = -1;
w = -1;
for (int i = v + 1;i < Vers;i++)
{
if (edge[u][i] != noEdge) {
w = i;
break;
}
}
return w;
}
bool PutVer(int u, TypeOfVer data) //对G中指定顶点赋值
{
if (u >= Vers)return false;
ver[u] = data;
return true;
}
int LocateVer(TypeOfVer data) //返回G中指定顶点的位置
{
for (int i = 0;i < Vers;i++)
{
if (ver[i] == data)return i;
}
return -1;
}
bool InsertVer(TypeOfVer& data) //往G中添加一个顶点
{
ver.push_back(data);
edge.push_back(vector<TypeOfEdge>(Vers, noEdge));
Vers++;
for (int i = 0;i < Vers;i++)
{
edge[i].push_back(noEdge);
}
return true;
}
bool Insert_Edge(int u, int v) //无权图插入一条边
{
if (u >= Vers || v >= Vers)return false;
else edge[u][v] = 1;
if (GraphKind == "UDG" || GraphKind == "UDN")
edge[v][u] = 1;
return true;
}
bool Insert_Edge(int u, int v, TypeOfEdge w) //有权图插入一条边
{
if (u >= Vers || v >= Vers)return false;
else edge[u][v] = w;
if (GraphKind == "UDG" || GraphKind == "UDN")
edge[v][u] = w;
return true;
}
bool DeleteVer(TypeOfVer& data) //往G中删除一个顶点
{
int n = LocateVer(data);
if (n == -1)return false;
ver.erase(ver.begin() + n);
for (int i = 0;i < Vers;i++)
edge[i].erase(edge[i].begin() + n);
edge.erase(edge.begin() + n);
Vers--;
return true;
}
bool Delete_Edge(int u, int v) //无权图删除一条边
{
if (u >= Vers || v >= Vers)
return false;
if (edge[u][v] == noEdge)return false;
edge[u][v] = noEdge;
if (GraphKind == "UDG" || GraphKind == "UDN")
edge[v][u] = noEdge;
Edges--;
return true;
}
bool Delete_Edge(int u, int v, TypeOfEdge& w) //有权图删除一条边
{
if (u >= Vers || v >= Vers)
return false;
if (edge[u][v] == noEdge)return false;
w = edge[u][v];
edge[u][v] = noEdge;
if (GraphKind == "UDG" || GraphKind == "UDN")
edge[v][u] = noEdge;
Edges--;
return true;
}
void DFS_Traverse(int u) //DFS遍历(外壳部分)
{
if (u >= Vers)return;
vector<int>visit(Vers);
int num = Vers;
DFS(u, num, visit);
}
void BFS_Traverse(int u) //BFS遍历
{
queue<int>q;
vector<int>visit(Vers);
q.push(u);
int v, w;
bool first = true;
visit[u] = 1;
while (!q.empty())
{
if (!first)cout << "->";
first = false;
u = q.front();
cout << ver[u];
q.pop();
GetFirstAdjVex(u, v);
while (v != -1)
{
if (!visit[v])
{
q.push(v);
visit[v] = 1;
}
GetNextAdjVex(u, v, w);
v = w;
}
}
}
int Get_InDegree(int u)//求有向图指定顶点的入度
{
if (u >= Vers)return -1;
if (GraphKind == "UDG" || GraphKind == "UDN")return -1;
int n = 0;
for (int i = 0;i < Vers;i++)
if (edge[i][u] != noEdge)n++;
return n;
}
int Get_OutDegree(int u)//求有向图指定顶点的(出)度
{
if (u >= Vers)return -1;
int n = 0;
for (int i = 0;i < Vers;i++)
if (edge[u][i] != noEdge)n++;
return n;
}
bool ExistEdge(int u, int v)//检查指定2个顶点是否是邻接顶点
{
if (u >= Vers || v >= Vers)return false;
if (edge[u][v] != noEdge)return true;
return false;
}
bool CheckRoute(int u, int v)//检查两个结点之间是否有路径存在(外壳部分,公有成员函数)
{
if (u >= Vers || v >= Vers)return false;
vector<int>visit(Vers);
return CheckRoute(u, v, visit);
}
TypeOfEdge GetEdgeWeight(int u, int v) { return edge[u][v]; }
//Dijkstra算法(成员函数)
bool Dijkstra(int u,vector<TypeOfEdge>& dist, vector<int> &pre) // u:源点的位序
{
if (u < 0 || u >= Vers)return false;
vector<int>vis(Vers, 0);
vis[u] = 1;
for (int i = 0;i < Vers;i++)
{
int min = 0x3f3f3f3f;
int minIndex = -1;
for (int i = 0;i < Vers;i++)
{
if (min > dist[i] && !vis[i])
{
minIndex = i;
min = dist[i];
}
}
if (minIndex == -1)break;
vis[minIndex] = 1;
int v, w;
GetFirstAdjVex(minIndex, v);
while (v != -1)
{
if (dist[v] > dist[minIndex] + edge[minIndex][v])
{
dist[v] = dist[minIndex] + edge[minIndex][v];
pre[v] = minIndex + 1;
}
GetNextAdjVex(minIndex, v, w);
v = w;
}
}
}
};
template <class TypeOfVer>
void input(int& vSize, int& eSize, vector<TypeOfVer>& d, vector<vector<int>>& e)
{
cin >> vSize;
d.resize(vSize);
for (int i = 0;i < vSize;i++)
{
cin >> d[i];
}
cin >> eSize;
e.resize(vSize);
for (int i = 0;i < vSize;i++)
e[i].resize(vSize);
int a, b;
for (int i = 0;i < eSize;i++)
{
cin >> a >> b;
e[a][b] = 1;
}
}
template <class TypeOfVer, class TypeOfEdge>
void input(int& vSize, int& eSize, TypeOfEdge &NoEdgeflag,vector<TypeOfVer>& d, vector<vector<int>>& e, vector<TypeOfEdge>& w)
{
cin >> vSize;
d.resize(vSize);
for (int i = 0;i < vSize;i++)
{
cin >> d[i];
}
cin >> NoEdgeflag;
cin >> eSize;
e.resize(vSize);
for (int i = 0;i < vSize;i++)
e[i].resize(vSize);
int a, b;
for (int i = 0;i < eSize;i++)
{
cin >> a >> b;
e[a][b] = 1;
}
w.resize(eSize);
for (int i = 0;i < eSize;i++)
cin >> w[i];
}
//最短路径输出(用户函数)
template<class TypeOfVer, class TypeOfEdge>
void searchPath(vector<TypeOfVer>& ver, vector<int>& prev, vector<TypeOfEdge>& dist, int v, int u) // ver:输入的顶点集 v:源点的位序 u:终点的位序
{
int temp = u;
if (prev[u] == 0 || u == v)return;
stack<int>s;
while (u != -1)
{
s.push(u);
u = prev[u] - 1;
}
cout << "<";
if (!s.empty())cout << "(" << s.top() << "," << ver[s.top()] << ")";
s.pop();
while (!s.empty())
{
cout << ",";
cout << "(" << s.top() << "," << ver[s.top()] << ")";
s.pop();
}
cout << ">," << dist[temp] << endl;
}
template <class TypeOfVer, class TypeOfEdge>
void runner(adjmatrix_graph<TypeOfVer, TypeOfEdge>& matrix)
{
int n = matrix.GetVerNum();
TypeOfEdge noEgde = matrix.GetnoEdge();
vector<TypeOfEdge>dist(n, noEgde);
vector<int>pre(n, 0);
int u, v, w;
cin >> u;
pre[u] = 0;
dist[u] = 0;
matrix.GetFirstAdjVex(u, v);
while (v != -1)
{
dist[v] = matrix.GetEdgeWeight(u, v);
pre[v] = u + 1;
matrix.GetNextAdjVex(u, v, w);
v = w;
}
matrix.PrintVer();
cout << endl;
matrix.PrintMatrix();
cout << endl;
for (auto x : dist)
cout << x << " ";
cout << endl;
for (auto x : pre)
cout << x << " ";
cout << endl << endl;
matrix.Dijkstra(u, dist, pre);
for (auto x : dist)
cout << x << " ";
cout << endl;
for (auto x : pre)
cout << x << " ";
cout << endl << endl;
vector<TypeOfVer> ver = matrix.GetVer();
for (int i = 0;i < n;i++)
searchPath(ver, pre, dist, u, i);
}
int main()
{
typedef string TypeOfVer;
typedef int TypeOfEdge;
int vSize = 0, eSize = 0;
vector<vector<int>>e;
vector<TypeOfVer> d;
TypeOfEdge noEdgeFlag;
vector<TypeOfEdge>w;
string str;
cin >> str;
if (str == "DG" || str == "UDG")
{
input(vSize, eSize, d, e);//无权图的构造
adjmatrix_graph<TypeOfVer, TypeOfEdge> matrix(str, vSize, eSize, d, e);
runner(matrix);
}
else {
input(vSize, eSize, noEdgeFlag, d, e, w);//有权图的构造
adjmatrix_graph<TypeOfVer, TypeOfEdge> matrix(str, vSize, eSize, noEdgeFlag, d, e, w);
runner(matrix);
}
return 0;
}
微信号公众号搜索:澜莲小哥
个人博客:澜莲的博客
力扣:https://leetcode-cn.com/u/g-l-/
微博:澜澜沧海水