前言
Runloop在实际应用中也是非常广泛的,今天我们就来深入剖析runloop的原理。
简单的说是一个运行循环。
1 runloop应用
我们先看下代码
#import "ViewController.h"
@interface ViewController ()
@end
@implementation ViewController
+ (void)load{
}
- (void)viewDidLoad {
[super viewDidLoad];
[[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(gotNotification:) name:@"helloMyNotification" object:nil];
[self sourceDemo];
}
- (void)sourceDemo{
//__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__
[NSTimer scheduledTimerWithTimeInterval:1 repeats:YES block:^(NSTimer * _Nonnull timer) {
NSLog(@"123");
}];
[self performSelector:@selector(fire) withObject:nil afterDelay:1.0];
// __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__
dispatch_async(dispatch_get_main_queue(), ^{
NSLog(@"1234");
});
// __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__
void (^block)(void) = ^{
NSLog(@"12345");
};
block();
}
// __CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__
- (void)fire{
NSLog(@"performSeletor");
}
#pragma mark - 触摸事件
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event{
// __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__
NSLog(@"收到!!!");
// [[NSNotificationCenter defaultCenter] postNotificationName:@"helloMyNotification" object:@"cooci"];
}
- (void)gotNotification:(NSNotification *)noti{
// __CFNOTIFICATIONCENTER_IS_CALLING_OUT_TO_AN_OBSERVER__
// NSLog(@"gotNotification = %@",noti);
}
@end
我们运行一下,看下效果,如下所示
我们找下runloop的官方文档Run Loops
runloop经典图
我们再通过bt看下堆栈
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
* frame #0: 0x00000001083a6223 01-Runloop初探`__28-[ViewController sourceDemo]_block_invoke(.block_descriptor=0x00000001083a80a8, timer=0x00006000027f4540) at ViewController.m:32:9
frame #1: 0x0000000108752951 Foundation`__NSFireTimer + 67
frame #2: 0x0000000108c9078a CoreFoundation`__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__ + 20
frame #3: 0x0000000108c9027c CoreFoundation`__CFRunLoopDoTimer + 924
frame #4: 0x0000000108c8f81a CoreFoundation`__CFRunLoopDoTimers + 265
frame #5: 0x0000000108c89e69 CoreFoundation`__CFRunLoopRun + 2013
frame #6: 0x0000000108c891a7 CoreFoundation`CFRunLoopRunSpecific + 567
frame #7: 0x0000000114c3dd85 GraphicsServices`GSEventRunModal + 139
frame #8: 0x000000010c5434df UIKitCore`-[UIApplication _run] + 912
frame #9: 0x000000010c54839c UIKitCore`UIApplicationMain + 101
frame #10: 0x00000001083a6451 01-Runloop初探`main(argc=1, argv=0x00007ffee7859c70) at main.m:21:16
frame #11: 0x000000010a311bbd libdyld.dylib`start + 1
这里也可以看出timer底层是由runloop控制的
Runllop的应用地方:
- block应用:__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__
- 调用timer:__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__
- 响应source0: __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__
- 响应source1: __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__
- GCD主队列:__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__
- observer源:__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__
runloop是一个运行循环(do while),那根我们的普通的do while有什么不一样。
经过分析,普通的do while一直占用内存不释放,而runloop当有事件接收时,才会唤醒,否休眠,不怎么占用内存消耗。
Runloop的作用:
- 保持程序的持续运
- 处理APP中的各种事件(触摸、定时器、performSelector)
- 节省cpu资源、提供程序的性能:该做事就做事,该休息就休息
2 runloop数据结构
我们知道Runloop的底层是由CFRunloop封装的, 我们在源码搜索一下,如下
void CFRunLoopRun(void) { /* DOES CALLOUT */
int32_t result;
do {
result = CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
CHECK_FOR_FORK();
} while (kCFRunLoopRunStopped != result && kCFRunLoopRunFinished != result);
}
这里可以看就是一个do while循环,如果没有停止或者结束,就会在while一直跑,但是不同的是runloop有一个休眠,要想了解这个问题,就得先分析它的数据结构。
CFRunLoopRef CFRunLoopGetCurrent(void) {
CHECK_FOR_FORK();
CFRunLoopRef rl = (CFRunLoopRef)_CFGetTSD(__CFTSDKeyRunLoop);
if (rl) return rl;
return _CFRunLoopGet0(pthread_self());
}
我们看下这段代码,这里获取当前的runloop,如果(CFRunLoopRef)_CFGetTSD(__CFTSDKeyRunLoop);(通过key-value获取)这里获取不到,就会调用_CFRunLoopGet0这个函数通过当前的线程获取。
_CFRunLoopGet0的源码
CF_EXPORT CFRunLoopRef _CFRunLoopGet0(pthread_t t) {
if (pthread_equal(t, kNilPthreadT)) {
t = pthread_main_thread_np();
}
__CFLock(&loopsLock);
if (!__CFRunLoops) {
__CFUnlock(&loopsLock);
CFMutableDictionaryRef dict = CFDictionaryCreateMutable(kCFAllocatorSystemDefault, 0, NULL, &kCFTypeDictionaryValueCallBacks);
CFRunLoopRef mainLoop = __CFRunLoopCreate(pthread_main_thread_np());
// 进行绑定 dict[@"pthread_main_thread_np"] = mainLoop
CFDictionarySetValue(dict, pthreadPointer(pthread_main_thread_np()), mainLoop);
if (!OSAtomicCompareAndSwapPtrBarrier(NULL, dict, (void * volatile *)&__CFRunLoops)) {
CFRelease(dict);
}
CFRelease(mainLoop);
__CFLock(&loopsLock);
}
CFRunLoopRef loop = (CFRunLoopRef)CFDictionaryGetValue(__CFRunLoops, pthreadPointer(t));
__CFUnlock(&loopsLock);
if (!loop) {
CFRunLoopRef newLoop = __CFRunLoopCreate(t);
__CFLock(&loopsLock);
loop = (CFRunLoopRef)CFDictionaryGetValue(__CFRunLoops, pthreadPointer(t));
if (!loop) {
CFDictionarySetValue(__CFRunLoops, pthreadPointer(t), newLoop);
loop = newLoop;
}
// don't release run loops inside the loopsLock, because CFRunLoopDeallocate may end up taking it
__CFUnlock(&loopsLock);
CFRelease(newLoop);
}
if (pthread_equal(t, pthread_self())) {
_CFSetTSD(__CFTSDKeyRunLoop, (void *)loop, NULL);
if (0 == _CFGetTSD(__CFTSDKeyRunLoopCntr)) {
_CFSetTSD(__CFTSDKeyRunLoopCntr, (void *)(PTHREAD_DESTRUCTOR_ITERATIONS-1), (void (*)(void *))__CFFinalizeRunLoop);
}
}
return loop;
}
如果
if (pthread_equal(t, kNilPthreadT)) {
(t默认主线程)等于kNilPthreadT 调用
t = pthread_main_thread_np();
这行代码。
这里说明了runloop与线程肯定是有关系的。
CFMutableDictionaryRef dict = CFDictionaryCreateMutable(kCFAllocatorSystemDefault, 0, NULL, &kCFTypeDictionaryValueCallBacks);
这里创建一个可变字典。
CFRunLoopRef mainLoop = __CFRunLoopCreate(pthread_main_thread_np());
这里根据main_thread创建一个mainloop,也就是通过线程创建runloop。
CFDictionarySetValue(dict, pthreadPointer(pthread_main_thread_np()), mainLoop);
这里形成key-value有形式,线程与runloop进行绑定。
如果不是主线程的话,是怎么样的?
CFRunLoopRef loop = (CFRunLoopRef)CFDictionaryGetValue(__CFRunLoops, pthreadPointer(t));
这里pthreadPointer这个函数获取线程获取runloop,如果这个runloop不存就会执行
CFRunLoopRef newLoop = __CFRunLoopCreate(t);
__CFLock(&loopsLock);
loop = (CFRunLoopRef)CFDictionaryGetValue(__CFRunLoops, pthreadPointer(t));
if (!loop) {
CFDictionarySetValue(__CFRunLoops, pthreadPointer(t), newLoop);
loop = newLoop;
}
根据这个线程t创建一个新的runloop,并通过key-value进行绑定。
无论是不是主线程,都是通过线程创建runloop,并且线程与runloop是一一对应的绑定关系。
创建出来的runloop的数据结构是怎么样的,我们来看下。
我们看下__CFRunLoopCreate
static CFRunLoopRef __CFRunLoopCreate(pthread_t t) {
CFRunLoopRef loop = NULL;
CFRunLoopModeRef rlm;
uint32_t size = sizeof(struct __CFRunLoop) - sizeof(CFRuntimeBase);
loop = (CFRunLoopRef)_CFRuntimeCreateInstance(kCFAllocatorSystemDefault, CFRunLoopGetTypeID(), size, NULL);
这里可以看出CFRunLoopRef是一个结构体。
CFRunLoopModeRef rlm;
runloop的模式。
loop->_commonModes = CFSetCreateMutable(kCFAllocatorSystemDefault, 0, &kCFTypeSetCallBacks);
CFSetAddValue(loop->_commonModes, kCFRunLoopDefaultMode);
loop->_commonModeItems = NULL;
loop->_currentMode = NULL;
loop->_modes = CFSetCreateMutable(kCFAllocatorSystemDefault, 0, &kCFTypeSetCallBacks);
loop->_blocks_head = NULL;
loop->_blocks_tail = NULL;
loop->_counterpart = NULL;
loop->_pthread = t;
#if DEPLOYMENT_TARGET_WINDOWS
loop->_winthread = GetCurrentThreadId();
#else
loop->_winthread = 0;
#endif
这些是loop的属性
- _commonModes 创建的是CFSetCreateMutable类型的,无序集合类型
- _currentMode为NULL
- _modes = CFSetCreateMutable(kCFAllocatorSystemDefault, 0, &kCFTypeSetCallBacks); 是set类型集合
- loop->_blocks_head = NULL; 头结点
- loop->_blocks_tail = NULL; 尾结点
- loop->_pthread = t; 把线程作为它的属性
我们来看下__CFRunLoop结构体
struct __CFRunLoop {
CFRuntimeBase _base;
pthread_mutex_t _lock; /* locked for accessing mode list */
__CFPort _wakeUpPort; // used for CFRunLoopWakeUp
Boolean _unused;
volatile _per_run_data *_perRunData; // reset for runs of the run loop
pthread_t _pthread;
uint32_t _winthread;
CFMutableSetRef _commonModes;
CFMutableSetRef _commonModeItems;
CFRunLoopModeRef _currentMode;
CFMutableSetRef _modes;
struct _block_item *_blocks_head;
struct _block_item *_blocks_tail;
CFAbsoluteTime _runTime;
CFAbsoluteTime _sleepTime;
CFTypeRef _counterpart;
};
这里就是整个runloop的结构体
- _commonModes 是事件源依赖model去run
- _commonModes是mutableset类型,也就是有多个
- _commonModeItems也是有多个
- 一个mode下可能有多个items,而mode又是_commonModes其中的一个
一个runloop会有多个mode,一个mode下面有可能有多个相关的事务,比如CFRunloopSource,CFRunloop Timer,CFRunloopObserver
比如这张图也解释的很清楚。
我们看下CFRunLoopModeRef的定义
typedef struct __CFRunLoopMode *CFRunLoopModeRef;
__CFRunLoopMode的源码
struct __CFRunLoopMode {
CFRuntimeBase _base;
pthread_mutex_t _lock; /* must have the run loop locked before locking this */
CFStringRef _name;
Boolean _stopped;
char _padding[3];
CFMutableSetRef _sources0;
CFMutableSetRef _sources1;
CFMutableArrayRef _observers;
CFMutableArrayRef _timers;
CFMutableDictionaryRef _portToV1SourceMap;
__CFPortSet _portSet;
CFIndex _observerMask;
#if USE_DISPATCH_SOURCE_FOR_TIMERS
dispatch_source_t _timerSource;
dispatch_queue_t _queue;
Boolean _timerFired; // set to true by the source when a timer has fired
Boolean _dispatchTimerArmed;
#endif
#if USE_MK_TIMER_TOO
mach_port_t _timerPort;
Boolean _mkTimerArmed;
#endif
#if DEPLOYMENT_TARGET_WINDOWS
DWORD _msgQMask;
void (*_msgPump)(void);
#endif
uint64_t _timerSoftDeadline; /* TSR */
uint64_t _timerHardDeadline; /* TSR */
};
这里有srouce0、srouce1、_observers、_timers都是有多个事件源。
srouce0、srouce1、_observers、_timers是如何加入到runloop以及如何执行的,我们继续往下分析。
3 runloop处理事务的流程分析
CFRunLoopRef lp = CFRunLoopGetCurrent();
CFRunLoopMode mode = CFRunLoopCopyCurrentMode(lp);
NSLog(@"mode == %@",mode);
CFArrayRef modeArray= CFRunLoopCopyAllModes(lp);
NSLog(@"modeArray == %@",modeArray);
NSTimer *timer = [NSTimer timerWithTimeInterval:1 repeats:YES block:^(NSTimer * _Nonnull timer) {
NSLog(@"fire in home -- %@",[[NSRunLoop currentRunLoop] currentMode]);
}];
[[NSRunLoop currentRunLoop] addTimer:timer forMode:NSRunLoopCommonModes];
我们来分析下这段代码,看下timer是如何加入到runloop中的。
我们在源码中搜下addTimer,如下
void CFRunLoopAddTimer(CFRunLoopRef rl, CFRunLoopTimerRef rlt, CFStringRef modeName) {
CHECK_FOR_FORK();
if (__CFRunLoopIsDeallocating(rl)) return;
if (!__CFIsValid(rlt) || (NULL != rlt->_runLoop && rlt->_runLoop != rl)) return;
__CFRunLoopLock(rl);
if (modeName == kCFRunLoopCommonModes) {
CFSetRef set = rl->_commonModes ? CFSetCreateCopy(kCFAllocatorSystemDefault, rl->_commonModes) : NULL;
if (NULL == rl->_commonModeItems) {
rl->_commonModeItems = CFSetCreateMutable(kCFAllocatorSystemDefault, 0, &kCFTypeSetCallBacks);
}
CFSetAddValue(rl->_commonModeItems, rlt);
if (NULL != set) {
CFTypeRef context[2] = {rl, rlt};
/* add new item to all common-modes */
CFSetApplyFunction(set, (__CFRunLoopAddItemToCommonModes), (void *)context);
CFRelease(set);
}
} else {
CFRunLoopModeRef rlm = __CFRunLoopFindMode(rl, modeName, true);
if (NULL != rlm) {
if (NULL == rlm->_timers) {
CFArrayCallBacks cb = kCFTypeArrayCallBacks;
cb.equal = NULL;
rlm->_timers = CFArrayCreateMutable(kCFAllocatorSystemDefault, 0, &cb);
}
}
if (NULL != rlm && !CFSetContainsValue(rlt->_rlModes, rlm->_name)) {
__CFRunLoopTimerLock(rlt);
if (NULL == rlt->_runLoop) {
rlt->_runLoop = rl;
} else if (rl != rlt->_runLoop) {
__CFRunLoopTimerUnlock(rlt);
__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);
return;
}
CFSetAddValue(rlt->_rlModes, rlm->_name);
__CFRunLoopTimerUnlock(rlt);
__CFRunLoopTimerFireTSRLock();
__CFRepositionTimerInMode(rlm, rlt, false);
__CFRunLoopTimerFireTSRUnlock();
if (!_CFExecutableLinkedOnOrAfter(CFSystemVersionLion)) {
// Normally we don't do this on behalf of clients, but for
// backwards compatibility due to the change in timer handling...
if (rl != CFRunLoopGetCurrent()) CFRunLoopWakeUp(rl);
}
}
if (NULL != rlm) {
__CFRunLoopModeUnlock(rlm);
}
}
__CFRunLoopUnlock(rl);
}
在这时找到了addTimer的源码。
- 它的三个参数
CFRunLoopRef rl, CFRunLoopTimerRef rlt, CFStringRef modeName
这里
if (modeName == kCFRunLoopCommonModes)
判断modeName的类型,kCFRunLoopCommonModes是一种集合
CFSetRef set = rl->_commonModes ? CFSetCreateCopy(kCFAllocatorSystemDefault, rl->_commonModes) : NULL;
这里取出modes,接着
if (NULL == rl->_commonModeItems) {
rl->_commonModeItems = CFSetCreateMutable(kCFAllocatorSystemDefault, 0, &kCFTypeSetCallBacks);
判断是否为空,如果为空创建一个CFSetCreateMutable集合类型,如果非空
CFSetAddValue(rl->_commonModeItems, rlt);
if (NULL != set) {
CFTypeRef context[2] = {rl, rlt};
/* add new item to all common-modes */
CFSetApplyFunction(set, (__CFRunLoopAddItemToCommonModes), (void *)context);
CFRelease(set);
}
把CFRunLoopTimerRef加入到_commonModeItems中。
然后调用CFSetApplyFunction设置回调函数,添加任务到当前的集合中去。
- 如果这里
if (modeName == kCFRunLoopCommonModes)
不等于集合类型,
执行
CFRunLoopModeRef rlm = __CFRunLoopFindMode(rl, modeName, true);
通过这个modeName名字去获取这个CFRunLoopModeRef类型。
if (NULL != rlm) {
if (NULL == rlm->_timers) {
CFArrayCallBacks cb = kCFTypeArrayCallBacks;
cb.equal = NULL;
rlm->_timers = CFArrayCreateMutable(kCFAllocatorSystemDefault, 0, &cb);
}
}
如果没有这个类型 就去创建这个集合类型。
这里只是添加进去,还不能执行,我们再来看下runlooprun
void CFRunLoopRun(void) { /* DOES CALLOUT */
int32_t result;
do {
result = CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
CHECK_FOR_FORK();
} while (kCFRunLoopRunStopped != result && kCFRunLoopRunFinished != result);
}
这里调用CFRunLoopRunSpecific这个函数运行
Int32 CFRunLoopRunSpecific(CFRunLoopRef rl, CFStringRef modeName, CFTimeInterval seconds, Boolean returnAfterSourceHandled) { /* DOES CALLOUT */
CHECK_FOR_FORK();
if (__CFRunLoopIsDeallocating(rl)) return kCFRunLoopRunFinished;
__CFRunLoopLock(rl);
CFRunLoopModeRef currentMode = __CFRunLoopFindMode(rl, modeName, false);
if (NULL == currentMode || __CFRunLoopModeIsEmpty(rl, currentMode, rl->_currentMode)) {
Boolean did = false;
if (currentMode) __CFRunLoopModeUnlock(currentMode);
__CFRunLoopUnlock(rl);
return did ? kCFRunLoopRunHandledSource : kCFRunLoopRunFinished;
}
volatile _per_run_data *previousPerRun = __CFRunLoopPushPerRunData(rl);
CFRunLoopModeRef previousMode = rl->_currentMode;
rl->_currentMode = currentMode;
int32_t result = kCFRunLoopRunFinished;
if (currentMode->_observerMask & kCFRunLoopEntry ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopEntry);
result = __CFRunLoopRun(rl, currentMode, seconds, returnAfterSourceHandled, previousMode);
if (currentMode->_observerMask & kCFRunLoopExit ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
__CFRunLoopModeUnlock(currentMode);
__CFRunLoopPopPerRunData(rl, previousPerRun);
rl->_currentMode = previousMode;
__CFRunLoopUnlock(rl);
return result;
}
在这里面
result = __CFRunLoopRun(rl, currentMode, seconds, returnAfterSourceHandled, previousMode);
有这行代码,我们再进去看下
static int32_t __CFRunLoopRun__CFRunLoopRun(CFRunLoopRef rl, CFRunLoopModeRef rlm, CFTimeInterval seconds, Boolean stopAfterHandle, CFRunLoopModeRef previousMode)
这个函数
if (!__CFRunLoopDoTimers(rl, rlm, mach_absolute_time()))
这样一行代码,我们看下__CFRunLoopDoTimers这个函数,是在runloop这个函数的do while循环中
static Boolean __CFRunLoopDoTimers(CFRunLoopRef rl, CFRunLoopModeRef rlm, uint64_t limitTSR) { /* DOES CALLOUT */
Boolean timerHandled = false;
CFMutableArrayRef timers = NULL;
for (CFIndex idx = 0, cnt = rlm->_timers ? CFArrayGetCount(rlm->_timers) : 0; idx < cnt; idx++) {
CFRunLoopTimerRef rlt = (CFRunLoopTimerRef)CFArrayGetValueAtIndex(rlm->_timers, idx);
if (__CFIsValid(rlt) && !__CFRunLoopTimerIsFiring(rlt)) {
if (rlt->_fireTSR <= limitTSR) {
if (!timers) timers = CFArrayCreateMutable(kCFAllocatorSystemDefault, 0, &kCFTypeArrayCallBacks);
CFArrayAppendValue(timers, rlt);
}
}
}
for (CFIndex idx = 0, cnt = timers ? CFArrayGetCount(timers) : 0; idx < cnt; idx++) {
CFRunLoopTimerRef rlt = (CFRunLoopTimerRef)CFArrayGetValueAtIndex(timers, idx);
Boolean did = __CFRunLoopDoTimer(rl, rlm, rlt);
timerHandled = timerHandled || did;
}
if (timers) CFRelease(timers);
return timerHandled;
}
在我们的应用中不可能只有一个timer,所以这里开始遍历
for (CFIndex idx = 0, cnt = rlm->_timers ? CFArrayGetCount(rlm->_timers) : 0; idx < cnt; idx++)
从这里
CFRunLoopTimerRef rlt = (CFRunLoopTimerRef)CFArrayGetValueAtIndex(rlm->_timers, idx);
获取单个timer处理。
然后
for (CFIndex idx = 0, cnt = timers ? CFArrayGetCount(timers) : 0; idx < cnt; idx++) {
CFRunLoopTimerRef rlt = (CFRunLoopTimerRef)CFArrayGetValueAtIndex(timers, idx);
Boolean did = __CFRunLoopDoTimer(rl, rlm, rlt);
timerHandled = timerHandled || did;
}
遍历timer执行,我们再来看下调用的__CFRunLoopDoTimer这个函数
static Boolean __CFRunLoopDoTimer(CFRunLoopRef rl, CFRunLoopModeRef rlm, CFRunLoopTimerRef rlt) { /* DOES CALLOUT */
Boolean timerHandled = false;
uint64_t oldFireTSR = 0;
/* Fire a timer */
CFRetain(rlt);
__CFRunLoopTimerLock(rlt);
if (__CFIsValid(rlt) && rlt->_fireTSR <= mach_absolute_time() && !__CFRunLoopTimerIsFiring(rlt) && rlt->_runLoop == rl) {
void *context_info = NULL;
void (*context_release)(const void *) = NULL;
if (rlt->_context.retain) {
context_info = (void *)rlt->_context.retain(rlt->_context.info);
context_release = rlt->_context.release;
} else {
context_info = rlt->_context.info;
}
Boolean doInvalidate = (0.0 == rlt->_interval);
__CFRunLoopTimerSetFiring(rlt);
// Just in case the next timer has exactly the same deadlines as this one, we reset these values so that the arm next timer code can correctly find the next timer in the list and arm the underlying timer.
rlm->_timerSoftDeadline = UINT64_MAX;
rlm->_timerHardDeadline = UINT64_MAX;
__CFRunLoopTimerUnlock(rlt);
__CFRunLoopTimerFireTSRLock();
oldFireTSR = rlt->_fireTSR;
__CFRunLoopTimerFireTSRUnlock();
__CFArmNextTimerInMode(rlm, rl);
__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);
__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__(rlt->_callout, rlt, context_info);
CHECK_FOR_FORK();
if (doInvalidate) {
CFRunLoopTimerInvalidate(rlt); /* DOES CALLOUT */
}
if (context_release) {
context_release(context_info);
}
__CFRunLoopLock(rl);
__CFRunLoopModeLock(rlm);
__CFRunLoopTimerLock(rlt);
timerHandled = true;
__CFRunLoopTimerUnsetFiring(rlt);
}
if (__CFIsValid(rlt) && timerHandled) {
/* This is just a little bit tricky: we want to support calling
* CFRunLoopTimerSetNextFireDate() from within the callout and
* honor that new time here if it is a later date, otherwise
* it is completely ignored. */
if (oldFireTSR < rlt->_fireTSR) {
/* Next fire TSR was set, and set to a date after the previous
* fire date, so we honor it. */
__CFRunLoopTimerUnlock(rlt);
// The timer was adjusted and repositioned, during the
// callout, but if it was still the min timer, it was
// skipped because it was firing. Need to redo the
// min timer calculation in case rlt should now be that
// timer instead of whatever was chosen.
__CFArmNextTimerInMode(rlm, rl);
} else {
uint64_t nextFireTSR = 0LL;
uint64_t intervalTSR = 0LL;
if (rlt->_interval <= 0.0) {
} else if (TIMER_INTERVAL_LIMIT < rlt->_interval) {
intervalTSR = __CFTimeIntervalToTSR(TIMER_INTERVAL_LIMIT);
} else {
intervalTSR = __CFTimeIntervalToTSR(rlt->_interval);
}
if (LLONG_MAX - intervalTSR <= oldFireTSR) {
nextFireTSR = LLONG_MAX;
} else {
if (intervalTSR == 0) {
// 15304159: Make sure we don't accidentally loop forever here
CRSetCrashLogMessage("A CFRunLoopTimer with an interval of 0 is set to repeat");
HALT;
}
uint64_t currentTSR = mach_absolute_time();
nextFireTSR = oldFireTSR;
while (nextFireTSR <= currentTSR) {
nextFireTSR += intervalTSR;
}
}
CFRunLoopRef rlt_rl = rlt->_runLoop;
if (rlt_rl) {
CFRetain(rlt_rl);
CFIndex cnt = CFSetGetCount(rlt->_rlModes);
STACK_BUFFER_DECL(CFTypeRef, modes, cnt);
CFSetGetValues(rlt->_rlModes, (const void **)modes);
// To avoid A->B, B->A lock ordering issues when coming up
// towards the run loop from a source, the timer has to be
// unlocked, which means we have to protect from object
// invalidation, although that's somewhat expensive.
for (CFIndex idx = 0; idx < cnt; idx++) {
CFRetain(modes[idx]);
}
__CFRunLoopTimerUnlock(rlt);
for (CFIndex idx = 0; idx < cnt; idx++) {
CFStringRef name = (CFStringRef)modes[idx];
modes[idx] = (CFTypeRef)__CFRunLoopFindMode(rlt_rl, name, false);
CFRelease(name);
}
__CFRunLoopTimerFireTSRLock();
rlt->_fireTSR = nextFireTSR;
rlt->_nextFireDate = CFAbsoluteTimeGetCurrent() + __CFTimeIntervalUntilTSR(nextFireTSR);
for (CFIndex idx = 0; idx < cnt; idx++) {
CFRunLoopModeRef rlm = (CFRunLoopModeRef)modes[idx];
if (rlm) {
__CFRepositionTimerInMode(rlm, rlt, true);
}
}
__CFRunLoopTimerFireTSRUnlock();
for (CFIndex idx = 0; idx < cnt; idx++) {
__CFRunLoopModeUnlock((CFRunLoopModeRef)modes[idx]);
}
CFRelease(rlt_rl);
} else {
__CFRunLoopTimerUnlock(rlt);
__CFRunLoopTimerFireTSRLock();
rlt->_fireTSR = nextFireTSR;
rlt->_nextFireDate = CFAbsoluteTimeGetCurrent() + __CFTimeIntervalUntilTSR(nextFireTSR);
__CFRunLoopTimerFireTSRUnlock();
}
}
} else {
__CFRunLoopTimerUnlock(rlt);
}
CFRelease(rlt);
return timerHandled;
}
我们以timer作为切入点
- 通过mode,addTimer到runloop中
- runloop run
- 遍历timers
- doTimer
- 执行回调
我们就来分析下 doTimer如何操作的。
if (__CFIsValid(rlt) && rlt->_fireTSR <= mach_absolute_time() && !__CFRunLoopTimerIsFiring(rlt) && rlt->_runLoop == rl)
if (__CFIsValid(rlt) && timerHandled) {
这两个if语句是我们要分析的。
CFRunLoopModeRef是在runloop里面对应mode依赖的timer
rlm->_timerSoftDeadline = UINT64_MAX;
rlm->_timerHardDeadline = UINT64_MAX;
__CFRunLoopTimerUnlock(rlt);
__CFRunLoopTimerFireTSRLock();
oldFireTSR = rlt->_fireTSR;
对rlm处理,然后调用
__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__(rlt->_callout, rlt, context_info);
这个回调函数。
4 runloop的原理分析
我们先来看张图
我们通过这张图分析runlooplllllfkofkfooofkogkpv的mcmcm原理。
我们知道runloop是有状态,比如进入退出,进入,前台,后台等,我们还需要分析下runloop。
result = CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);这里监听返回结果,所以需要看下CFRunLoopRunSpecific这个函数。
我们知道runloop在run的时候,是需要依赖mode执行的。在我们__CFRunLoopRun之前,会有一个* if (currentMode->_observerMask & kCFRunLoopEntry )*的判断,判断是否进来了。
/* Run Loop Observer Activities */
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
kCFRunLoopEntry = (1UL << 0),
kCFRunLoopBeforeTimers = (1UL << 1),
kCFRunLoopBeforeSources = (1UL << 2),
kCFRunLoopBeforeWaiting = (1UL << 5),
kCFRunLoopAfterWaiting = (1UL << 6),
kCFRunLoopExit = (1UL << 7),
kCFRunLoopAllActivities = 0x0FFFFFFFU
};
这里CFRunLoopActivity的状态,判断事务执行的状况。
kCFRunLoopBeforeWaiting与kCFRunLoopAfterWaiting标志着事务的生命周期。
- 这里的
__CFRunLoopDoObservers(rl, currentMode, kCFRunLoopEntry);
调用这个__CFRunLoopDoObservers通知进入roop
__CFRunLoopRun这个函数中
if (seconds <= 0.0) { // instant timeout
seconds = 0.0;
timeout_context->termTSR = 0ULL;
}
如果seconds<=0.0就退出,
如果
else { // infinite timeout
seconds = 9999999999.0;
timeout_context->termTSR = UINT64_MAX;
}
这里做timerout标记,超时判断,说明runloop不是无限的循环。
如果
else if (seconds <= TIMER_INTERVAL_LIMIT)
这里是通过GCD 的source来实现的。
//seconds为超时时间,超时时执行__CFRunLoopTimeout函数
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, DISPATCH_QUEUE_OVERCOMMIT);
timeout_timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue);
dispatch_retain(timeout_timer);
timeout_context->ds = timeout_timer;
timeout_context->rl = (CFRunLoopRef)CFRetain(rl);
timeout_context->termTSR = startTSR + __CFTimeIntervalToTSR(seconds);
dispatch_set_context(timeout_timer, timeout_context); // source gets ownership of context
dispatch_source_set_event_handler_f(timeout_timer, __CFRunLoopTimeout);
dispatch_source_set_cancel_handler_f(timeout_timer, __CFRunLoopTimeoutCancel);
uint64_t ns_at = (uint64_t)((__CFTSRToTimeInterval(startTSR) + seconds) * 1000000000ULL);
dispatch_source_set_timer(timeout_timer, dispatch_time(1, ns_at), DISPATCH_TIME_FOREVER, 1000ULL);
dispatch_resume(timeout_timer);
通过GCD source实现定时器。
这里
dispatch_source_set_event_handler_f(timeout_timer, __CFRunLoopTimeout);
如果超进就会执行timeout的回调函数。
static void __CFRunLoopTimeout(void *arg) {
struct __timeout_context *context = (struct __timeout_context *)arg;
context->termTSR = 0ULL;
CFRUNLOOP_WAKEUP_FOR_TIMEOUT();
CFRunLoopWakeUp(context->rl);
// The interval is DISPATCH_TIME_FOREVER, so this won't fire again
}
- 这里的
if (rlm->_observerMask & kCFRunLoopBeforeTimers)
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeTimers);
代码通知 Observers: RunLoop 即将触发 Timer 回调。
- 这里的代码
if (rlm->_observerMask & kCFRunLoopBeforeSources)
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeSources);
通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。
执行被加入的block
__CFRunLoopDoBlocks(rl, rlm);
- 接着执行
Boolean sourceHandledThisLoop = __CFRunLoopDoSources0(rl, rlm, stopAfterHandle);
RunLoop 触发 Source0 (非port) 回调。
- __CFRunLoopDoBlocks(rl, rlm);//执行被加入的block*
- 下面的代码
if (__CFRunLoopServiceMachPort(dispatchPort, &msg, sizeof(msg_buffer), &livePort, 0)) {
//如果接收到了消息的话,前往第9步开始处理msg
goto handle_msg;
}
如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息,取跳转到第9步
6.然后就会执行以下代码
if (!poll && (rlm->_observerMask & kCFRunLoopBeforeWaiting)) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeWaiting);
//设置RunLoop为休眠状态
__CFRunLoopSetSleeping(rl);
通知 Observers: RunLoop 的线程即将进入休眠(sleep)。
在里面的do while中
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY);
接收waitSet端口的消息, 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。
唤醒的条件
- 一个基于 port 的Source 的事件
- 一个 Timer 到时间了
- RunLoop 自身的超时时间到了
- 被其他什么调用者手动唤醒
- 接着调用
if (!poll && (rlm->_observerMask & kCFRunLoopAfterWaiting)) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopAfterWaiting);
通知 Observers: RunLoop 的线程刚刚被唤醒了。
9.1 如果
if (!__CFRunLoopDoTimers(rl, rlm, mach_absolute_time())) {
// Re-arm the next timer, because we apparently fired early
__CFArmNextTimerInMode(rlm, rl);
}
一个 Timer 到时间了,触发这个Timer的回调
9.2 如果有dispatch到main_queue的block,执行block
9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件
处理唤醒时收到的消息,之后跳转到2,将会处理Timer
- 这里调用了
__CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
通知runloop退出runloop循环
总结
本篇文章部析的runloop数据结构,runloop处理事务的流程以及runloop的原理分析,文章中有可能会有遗漏的问题,没有分析的更详细,还希望大家可能指正,互相学习交流
附源码流程分析
static int32_t __CFRunLoopRun(CFRunLoopRef rl, CFRunLoopModeRef rlm, CFTimeInterval seconds, Boolean stopAfterHandle, CFRunLoopModeRef previousMode) {
//获取系统启动后的CPU运行时间,用于控制超时时间
uint64_t startTSR = mach_absolute_time();
// 判断当前runloop的状态是否关闭
if (__CFRunLoopIsStopped(rl)) {
__CFRunLoopUnsetStopped(rl);
return kCFRunLoopRunStopped;
} else if (rlm->_stopped) {
rlm->_stopped = false;
return kCFRunLoopRunStopped;
}
//mach端口,在内核中,消息在端口之间传递。 初始为0
mach_port_name_t dispatchPort = MACH_PORT_NULL;
//判断是否为主线程
Boolean libdispatchQSafe = pthread_main_np() && ((HANDLE_DISPATCH_ON_BASE_INVOCATION_ONLY && NULL == previousMode) || (!HANDLE_DISPATCH_ON_BASE_INVOCATION_ONLY && 0 == _CFGetTSD(__CFTSDKeyIsInGCDMainQ)));
//如果在主线程 && runloop是主线程的runloop && 该mode是commonMode,则给mach端口赋值为主线程收发消息的端口
if (libdispatchQSafe && (CFRunLoopGetMain() == rl) && CFSetContainsValue(rl->_commonModes, rlm->_name)) dispatchPort = _dispatch_get_main_queue_port_4CF();
#if USE_DISPATCH_SOURCE_FOR_TIMERS
mach_port_name_t modeQueuePort = MACH_PORT_NULL;
if (rlm->_queue) {
//mode赋值为dispatch端口_dispatch_runloop_root_queue_perform_4CF
modeQueuePort = _dispatch_runloop_root_queue_get_port_4CF(rlm->_queue);
if (!modeQueuePort) {
CRASH("Unable to get port for run loop mode queue (%d)", -1);
}
}
#endif
dispatch_source_t timeout_timer = NULL;
struct __timeout_context *timeout_context = (struct __timeout_context *)malloc(sizeof(*timeout_context));
if (seconds <= 0.0) { // instant timeout
seconds = 0.0;
timeout_context->termTSR = 0ULL;
// 1.0e10 == 1* 10^10
} else if (seconds <= TIMER_INTERVAL_LIMIT) {
//seconds为超时时间,超时时执行__CFRunLoopTimeout函数
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, DISPATCH_QUEUE_OVERCOMMIT);
timeout_timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue);
dispatch_retain(timeout_timer);
timeout_context->ds = timeout_timer;
timeout_context->rl = (CFRunLoopRef)CFRetain(rl);
timeout_context->termTSR = startTSR + __CFTimeIntervalToTSR(seconds);
dispatch_set_context(timeout_timer, timeout_context); // source gets ownership of context
dispatch_source_set_event_handler_f(timeout_timer, __CFRunLoopTimeout);
dispatch_source_set_cancel_handler_f(timeout_timer, __CFRunLoopTimeoutCancel);
uint64_t ns_at = (uint64_t)((__CFTSRToTimeInterval(startTSR) + seconds) * 1000000000ULL);
dispatch_source_set_timer(timeout_timer, dispatch_time(1, ns_at), DISPATCH_TIME_FOREVER, 1000ULL);
dispatch_resume(timeout_timer);
} else { // infinite timeout
//永不超时 - 永动机
seconds = 9999999999.0;
timeout_context->termTSR = UINT64_MAX;
}
//标志位默认为true
Boolean didDispatchPortLastTime = true;
//记录最后runloop状态,用于return
int32_t retVal = 0;
// itmes
do {
//初始化一个存放内核消息的缓冲池
uint8_t msg_buffer[3 * 1024];
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
mach_msg_header_t *msg = NULL;
mach_port_t livePort = MACH_PORT_NULL;
#elif DEPLOYMENT_TARGET_WINDOWS
HANDLE livePort = NULL;
Boolean windowsMessageReceived = false;
#endif
//取所有需要监听的port
__CFPortSet waitSet = rlm->_portSet;
//设置RunLoop为可以被唤醒状态
__CFRunLoopUnsetIgnoreWakeUps(rl);
/// 2. 通知 Observers: RunLoop 即将触发 Timer 回调。
if (rlm->_observerMask & kCFRunLoopBeforeTimers)
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeTimers);
if (rlm->_observerMask & kCFRunLoopBeforeSources)
/// 3. 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeSources);
/// 执行被加入的block
__CFRunLoopDoBlocks(rl, rlm);
/// 4. RunLoop 触发 Source0 (非port) 回调。
Boolean sourceHandledThisLoop = __CFRunLoopDoSources0(rl, rlm, stopAfterHandle);
if (sourceHandledThisLoop) {
/// 执行被加入的block
__CFRunLoopDoBlocks(rl, rlm);
}
//如果没有Sources0事件处理 并且 没有超时,poll为false
//如果有Sources0事件处理 或者 超时,poll都为true
Boolean poll = sourceHandledThisLoop || (0ULL == timeout_context->termTSR);
//第一次do..whil循环不会走该分支,因为didDispatchPortLastTime初始化是true
if (MACH_PORT_NULL != dispatchPort && !didDispatchPortLastTime) {
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
//从缓冲区读取消息
msg = (mach_msg_header_t *)msg_buffer;
/// 5. 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息。
if (__CFRunLoopServiceMachPort(dispatchPort, &msg, sizeof(msg_buffer), &livePort, 0)) {
//如果接收到了消息的话,前往第9步开始处理msg
goto handle_msg;
}
#elif DEPLOYMENT_TARGET_WINDOWS
if (__CFRunLoopWaitForMultipleObjects(NULL, &dispatchPort, 0, 0, &livePort, NULL)) {
goto handle_msg;
}
#endif
}
didDispatchPortLastTime = false;
/// 6.通知 Observers: RunLoop 的线程即将进入休眠(sleep)。
if (!poll && (rlm->_observerMask & kCFRunLoopBeforeWaiting)) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeWaiting);
//设置RunLoop为休眠状态
__CFRunLoopSetSleeping(rl);
// do not do any user callouts after this point (after notifying of sleeping)
// Must push the local-to-this-activation ports in on every loop
// iteration, as this mode could be run re-entrantly and we don't
// want these ports to get serviced.
__CFPortSetInsert(dispatchPort, waitSet);
__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
#if USE_DISPATCH_SOURCE_FOR_TIMERS
//这里有个内循环,用于接收等待端口的消息
//进入此循环后,线程进入休眠,直到收到新消息才跳出该循环,继续执行run loop
do {
if (kCFUseCollectableAllocator) {
objc_clear_stack(0);
memset(msg_buffer, 0, sizeof(msg_buffer));
}
msg = (mach_msg_header_t *)msg_buffer;
//7.接收waitSet端口的消息
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY);
//收到消息之后,livePort的值为msg->msgh_local_port,
if (modeQueuePort != MACH_PORT_NULL && livePort == modeQueuePort) {
// Drain the internal queue. If one of the callout blocks sets the timerFired flag, break out and service the timer.
while (_dispatch_runloop_root_queue_perform_4CF(rlm->_queue));
if (rlm->_timerFired) {
// Leave livePort as the queue port, and service timers below
rlm->_timerFired = false;
break;
} else {
if (msg && msg != (mach_msg_header_t *)msg_buffer) free(msg);
}
} else {
// Go ahead and leave the inner loop.
break;
}
} while (1);
#else
if (kCFUseCollectableAllocator) {
objc_clear_stack(0);
memset(msg_buffer, 0, sizeof(msg_buffer));
}
msg = (mach_msg_header_t *)msg_buffer;
/// 7. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。
/// • 一个基于 port 的Source 的事件。
/// • 一个 Timer 到时间了
/// • RunLoop 自身的超时时间到了
/// • 被其他什么调用者手动唤醒
// mach 事务 - 指令
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY);
#endif
#elif DEPLOYMENT_TARGET_WINDOWS
// Here, use the app-supplied message queue mask. They will set this if they are interested in having this run loop receive windows messages.
__CFRunLoopWaitForMultipleObjects(waitSet, NULL, poll ? 0 : TIMEOUT_INFINITY, rlm->_msgQMask, &livePort, &windowsMessageReceived);
#endif
__CFRunLoopLock(rl);
__CFRunLoopModeLock(rlm);
// Must remove the local-to-this-activation ports in on every loop
// iteration, as this mode could be run re-entrantly and we don't
// want these ports to get serviced. Also, we don't want them left
// in there if this function returns.
__CFPortSetRemove(dispatchPort, waitSet);
__CFRunLoopSetIgnoreWakeUps(rl);
// user callouts now OK again
//取消runloop的休眠状态
__CFRunLoopUnsetSleeping(rl);
/// 8. 通知 Observers: RunLoop 的线程刚刚被唤醒了。
if (!poll && (rlm->_observerMask & kCFRunLoopAfterWaiting)) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopAfterWaiting);
/// 收到消息,处理消息。
handle_msg:;
__CFRunLoopSetIgnoreWakeUps(rl);
#if DEPLOYMENT_TARGET_WINDOWS
if (windowsMessageReceived) {
// These Win32 APIs cause a callout, so make sure we're unlocked first and relocked after
__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);
if (rlm->_msgPump) {
rlm->_msgPump();
} else {
MSG msg;
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_NOYIELD)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}
__CFRunLoopLock(rl);
__CFRunLoopModeLock(rlm);
sourceHandledThisLoop = true;
// To prevent starvation of sources other than the message queue, we check again to see if any other sources need to be serviced
// Use 0 for the mask so windows messages are ignored this time. Also use 0 for the timeout, because we're just checking to see if the things are signalled right now -- we will wait on them again later.
// NOTE: Ignore the dispatch source (it's not in the wait set anymore) and also don't run the observers here since we are polling.
__CFRunLoopSetSleeping(rl);
__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);
__CFRunLoopWaitForMultipleObjects(waitSet, NULL, 0, 0, &livePort, NULL);
__CFRunLoopLock(rl);
__CFRunLoopModeLock(rlm);
__CFRunLoopUnsetSleeping(rl);
// If we have a new live port then it will be handled below as normal
}
#endif
if (MACH_PORT_NULL == livePort) {
CFRUNLOOP_WAKEUP_FOR_NOTHING();
// handle nothing
} else if (livePort == rl->_wakeUpPort) {
CFRUNLOOP_WAKEUP_FOR_WAKEUP();
// do nothing on Mac OS
#if DEPLOYMENT_TARGET_WINDOWS
// Always reset the wake up port, or risk spinning forever
ResetEvent(rl->_wakeUpPort);
#endif
}
#if USE_DISPATCH_SOURCE_FOR_TIMERS
else if (modeQueuePort != MACH_PORT_NULL && livePort == modeQueuePort) {
CFRUNLOOP_WAKEUP_FOR_TIMER();
/// 9.1 如果一个 Timer 到时间了,触发这个Timer的回调。
if (!__CFRunLoopDoTimers(rl, rlm, mach_absolute_time())) {
// Re-arm the next timer, because we apparently fired early
__CFArmNextTimerInMode(rlm, rl);
}
}
#endif
#if USE_MK_TIMER_TOO
else if (rlm->_timerPort != MACH_PORT_NULL && livePort == rlm->_timerPort) {
CFRUNLOOP_WAKEUP_FOR_TIMER();
// On Windows, we have observed an issue where the timer port is set before the time which we requested it to be set. For example, we set the fire time to be TSR 167646765860, but it is actually observed firing at TSR 167646764145, which is 1715 ticks early. The result is that, when __CFRunLoopDoTimers checks to see if any of the run loop timers should be firing, it appears to be 'too early' for the next timer, and no timers are handled.
// In this case, the timer port has been automatically reset (since it was returned from MsgWaitForMultipleObjectsEx), and if we do not re-arm it, then no timers will ever be serviced again unless something adjusts the timer list (e.g. adding or removing timers). The fix for the issue is to reset the timer here if CFRunLoopDoTimers did not handle a timer itself. 9308754
if (!__CFRunLoopDoTimers(rl, rlm, mach_absolute_time())) {
// Re-arm the next timer
__CFArmNextTimerInMode(rlm, rl);
}
}
#endif
/// 9.2 如果有dispatch到main_queue的block,执行block
else if (livePort == dispatchPort) {
CFRUNLOOP_WAKEUP_FOR_DISPATCH();
__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);
_CFSetTSD(__CFTSDKeyIsInGCDMainQ, (void *)6, NULL);
#if DEPLOYMENT_TARGET_WINDOWS
void *msg = 0;
#endif
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
_CFSetTSD(__CFTSDKeyIsInGCDMainQ, (void *)0, NULL);
__CFRunLoopLock(rl);
__CFRunLoopModeLock(rlm);
sourceHandledThisLoop = true;
didDispatchPortLastTime = true;
} else {
/// 9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件
CFRUNLOOP_WAKEUP_FOR_SOURCE();
// Despite the name, this works for windows handles as well
CFRunLoopSourceRef rls = __CFRunLoopModeFindSourceForMachPort(rl, rlm, livePort);
if (rls) {
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
mach_msg_header_t *reply = NULL;
sourceHandledThisLoop = __CFRunLoopDoSource1(rl, rlm, rls, msg, msg->msgh_size, &reply) || sourceHandledThisLoop;
if (NULL != reply) {
(void)mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0, MACH_PORT_NULL, 0, MACH_PORT_NULL);
CFAllocatorDeallocate(kCFAllocatorSystemDefault, reply);
}
#elif DEPLOYMENT_TARGET_WINDOWS
sourceHandledThisLoop = __CFRunLoopDoSource1(rl, rlm, rls) || sourceHandledThisLoop;
#endif
}
}
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
if (msg && msg != (mach_msg_header_t *)msg_buffer) free(msg);
#endif
/// 执行加入到Loop的block
__CFRunLoopDoBlocks(rl, rlm);
if (sourceHandledThisLoop && stopAfterHandle) {
/// 进入loop时参数说处理完事件就返回。
retVal = kCFRunLoopRunHandledSource;
} else if (timeout_context->termTSR < mach_absolute_time()) {
/// 超出传入参数标记的超时时间了
retVal = kCFRunLoopRunTimedOut;
} else if (__CFRunLoopIsStopped(rl)) {
/// 被外部调用者强制停止了
__CFRunLoopUnsetStopped(rl);
retVal = kCFRunLoopRunStopped;
} else if (rlm->_stopped) {
/// 自动停止了
rlm->_stopped = false;
retVal = kCFRunLoopRunStopped;
} else if (__CFRunLoopModeIsEmpty(rl, rlm, previousMode)) {
/// source/timer/observer一个都没有了
retVal = kCFRunLoopRunFinished;
}
/// 如果没超时,mode里没空,loop也没被停止,那继续loop。
} while (0 == retVal);
if (timeout_timer) {
dispatch_source_cancel(timeout_timer);
dispatch_release(timeout_timer);
} else {
free(timeout_context);
}
return retVal;
}
RunLoop内部执行过程
SInt32 CFRunLoopRunSpecific(CFRunLoopRef rl, CFStringRef modeName, CFTimeInterval seconds, Boolean returnAfterSourceHandled) { /* DOES CALLOUT */
CHECK_FOR_FORK();
if (__CFRunLoopIsDeallocating(rl)) return kCFRunLoopRunFinished;
__CFRunLoopLock(rl);
/// 首先根据modeName找到对应mode
CFRunLoopModeRef currentMode = __CFRunLoopFindMode(rl, modeName, false);
/// 通知 Observers: RunLoop 即将进入 loop。
__CFRunLoopDoObservers(rl, currentMode, kCFRunLoopEntry);
/// 内部函数,进入loop
result = __CFRunLoopRun(rl, currentMode, seconds, returnAfterSourceHandled, previousMode);
/// 通知 Observers: RunLoop 即将退出。
__CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
return result;
}
/// 核心函数
static int32_t __CFRunLoopRun(CFRunLoopRef rl, CFRunLoopModeRef rlm, CFTimeInterval seconds, Boolean stopAfterHandle, CFRunLoopModeRef previousMode) {
int32_t retVal = 0;
do { // itmes do
/// 通知 Observers: 即将处理timer事件
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeTimers);
/// 通知 Observers: 即将处理Source事件
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeSources)
/// 处理Blocks
__CFRunLoopDoBlocks(rl, rlm);
/// 处理sources0
Boolean sourceHandledThisLoop = __CFRunLoopDoSources0(rl, rlm, stopAfterHandle);
/// 处理sources0返回为YES
if (sourceHandledThisLoop) {
/// 处理Blocks
__CFRunLoopDoBlocks(rl, rlm);
}
/// 判断有无端口消息(Source1)
if (__CFRunLoopServiceMachPort(dispatchPort, &msg, sizeof(msg_buffer), &livePort, 0, &voucherState, NULL)) {
/// 处理消息
goto handle_msg;
}
/// 通知 Observers: 即将进入休眠
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeWaiting);
__CFRunLoopSetSleeping(rl);
/// 等待被唤醒
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY, &voucherState, &voucherCopy);
// user callouts now OK again
__CFRunLoopUnsetSleeping(rl);
/// 通知 Observers: 被唤醒,结束休眠
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopAfterWaiting);
handle_msg:
if (被Timer唤醒) {
/// 处理Timers
__CFRunLoopDoTimers(rl, rlm, mach_absolute_time());
} else if (被GCD唤醒) {
/// 处理gcd
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
} else if (被Source1唤醒) {
/// 被Source1唤醒,处理Source1
__CFRunLoopDoSource1(rl, rlm, rls, msg, msg->msgh_size, &reply)
}
/// 处理block
__CFRunLoopDoBlocks(rl, rlm);
if (sourceHandledThisLoop && stopAfterHandle) {
retVal = kCFRunLoopRunHandledSource;
} else if (timeout_context->termTSR < mach_absolute_time()) {
retVal = kCFRunLoopRunTimedOut;
} else if (__CFRunLoopIsStopped(rl)) {
__CFRunLoopUnsetStopped(rl);
retVal = kCFRunLoopRunStopped;
} else if (rlm->_stopped) {
rlm->_stopped = false;
retVal = kCFRunLoopRunStopped;
} else if (__CFRunLoopModeIsEmpty(rl, rlm, previousMode)) {
retVal = kCFRunLoopRunFinished;
}
} while (0 == retVal);
return retVal;
}
// main dispatch queue
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__
// __CFRunLoopDoObservers
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__
// __CFRunLoopDoBlocks
__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__
// __CFRunLoopDoSources0
__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__
// __CFRunLoopDoSource1
__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__
// __CFRunLoopDoTimers
__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__