导入pandas
import pandas as pd 导入pandas包并将之简写为pd
创建pandas中的DataFrame和Series
pd.DataFrame() 创建 pandas DataFrame
pd.Series() 创建 pandas Series
数据选择
df.column_name 选取数据框的某一列,生成Series格式数据,df为数据框,column_name为列名
df['column_name'] 选取数据框的某一列,生成Series格式数据
df[['column_name']] 选取数据框的列,生成DataFrame格式数据
df[2:5] 使用切片选择多行
df.loc[ ] 使用行和列的标签索引选取数据
df.iloc[ ] 使用行和列的数值索引选取数据
导入csv格式数据
pd.read_csv() 在pandas中读取csv文本格式数据
观察数据框##
df.head() 查看数据框df的前几行数据
df.tail() 查看数据框df的最后几行数据
df.info() 获取数据框df的信息
df.describe() 获取数据框df的各项统计值
df.index 查看数据框df的行索引
df.columns 查看数据框df的列名
df.shape 查看数据框df的形状,行数和列数
Series数据的一些统计分析函数
se.unique() 获取Series数据中的数值种类,一般用于分类数据,这里se为Series格式数据
se.value_counts() 统计Series数据中的数值种类及其对应的数据个数
se.mean() 计算Series数据的均值
se.std() 计算Series数据的标准差
se.median() 计算Series数据的中位数
se.max() 计算Series数据的最大值
se.min() 计算Series数据的最小值
se.count() 计算Series数据的个数
pandas绘图函数
df.plot(kind='scatter', x= , y= ) 绘制散点图
df.plot(kind='box') 绘制箱图
df.boxplot(by='column_name') 绘制箱图,并按 column_name 这一列的分类数值进行分组