一、默写下列内容。
1、二次函数的实际应用(抛物线型)的解题步骤。
二、好题重做。
抛物线型:
1、如图,有一座抛物线型拱桥,在正常水位时水面AB的宽是20米,如果水位上升3米时,水面CD的宽为10米,
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥280千米,(桥长忽略不计)货车以每小时40千米的速度开往乙地,当行驶到1小时时,忽然接到紧急通知,前方连降大雨,造成水位以每小时0.25米的速度持续上涨,(货车接到通知时水位在CD处),当水位达到桥拱最高点O时,禁止车辆通行;试问:汽车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少千米?
2、如图所示,是一条高速公路的隧道口在平面直角坐标系上的示意图,点A 和A1、点B和B1分别关于y轴对称,隧道拱部分BCB1为一条抛物线,最高点C离路面AA1的距离为8米,点B离路面为6米,隧道的宽度AA1为16米;
(1)求隧道拱抛物线BCB1的函数解析式;
(2)现有一大型运货汽车,装载某大型设备后,其宽度为4米,车载大型设备的顶部与路面的距离均为7米,他能否通过这个隧道?请说明理由。