浮点型数据精度丢失问题和解决办法

浮点型数据精度丢失问题和解决办法

问题描述:

今天做项目测试的时候发现一个数据显示不对,8.6显示成了860.000038,当时扒了下代码看了下数据类型,发现是float类型,将类型改成double测了下,发现精度丢失问题解决了。难道说float类型数据会丢失精度,double类型数据就不会了?后面经过测试,发现double类型数据也会丢失精度。


贴下测试截图:

分析这个问题之前,要先了解浮点类型数据在计算机中的存储方式。可以参考此链接:https://zhidao.baidu.com/question/1431942831037573059.html

分析原因:

1)由于计算机内部以二进制保存,所以十进制的有限位的小数,在计算机内部会是一个无限位的小数。

2)计算机保存浮点数的精度有限,例如float可以保留十进制最多7位(二进制23位)有效数字,double 可以保留十进制15~16位(二进制52位)有效数字。那有效数字以后的就被忽略了。

3)根据浮点数的存储标准(IEEE制定),float类型指数的起始数为127(二进制0111 1111),double类型指数的起始数为1023(二进制011 1111 1111),在此基础上加指数,得到的就是内存中指数的表示形式。尾数则直接填入,如果空间多余则以0补齐,如果空间不够则0舍1入。

因为十进制小数转换成二进制小数采用"乘2取整,顺序排列"法,以0.6为例:

0.6*2 = 1.2 取 1

0.2*2 = 0.4 取 0

0.4*2 = 0.8 取 0

0.8*2 = 1.6 取 1

0.6*2 = 1.2 取 1,到这里就循环了

最后得到的二进制小数为:0.100110011001100110011001.....由于float类型二进制最多保留23位,所以23位后的数据就不显示了。根据浮点数的存储标准,将第23位0舍1入,得到0.10011001100110011001101,导致精度就丢失,这就是数据误差来源

至于为什么换成double类型后精度就正常了,那是因为有效精度内都为0,丢失精度的数据部分没有显示造成的,看下图:

double类型精度丢失原因与float类型其实是一样的,区别在于有效位数。


解决方法:

浮点类精度丢失很难从根本上去解决,我在网上也没有找到很好的解决办法。说下我在项目里面的解决办法和注意事项吧:

1)我的项目中是将8.6元换算成单位分,将浮点数据*100后,将该结果的小数点后的数据四舍五入,保留两位小数。

2)浮点型数据比较的时候不要用等号。例如:i - 10.0 <= 0.0000000001 这样就会减少点误差。

3)数据传递最好使用字符串来传递,如果使用浮点型的话,数据精度可能会存在问题。

以上是个人原创,目的在于记录自己的成长和锻炼描述问题的能力,不足之处请多多指教。如要转载,请说明出处。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355