分布式组件-Sentinel-常见流量控制算法

常见的限流算法

计数器(固定窗口)算法

在指定周期内累加访问次数,当访问次数达到设定的阈值时,触发限流策略,当进入下一个时间周期时进行访问次数的清零。

image.png

限定每一分钟能够处理的总的请求数为100,在第一个一分钟内,一共请求了60次。接着到第二个一分钟,counter又从0开始计数,在一分半钟时,已经达到了最大限流的阈值,这个时候后续的所有请求都会被拒绝。这种算法可以用在短信发送的频次限制上,比如限制同一个用户一分钟之内触发短信发送的次数。

临界问题

这种算法存在一个临界问题,这种算法针对的是固定周期的累加访问次数,但是如果服务器需要做到的是限制每个一分钟内的访问量,这种算法显然就不适用了,因为计数器算法无法限制每隔一段时间内的访问量均不超过阈值。

image.png

在第一分钟的0:58和第二分钟的1:02这个时间段内,分别出现了100个请求,整体来看就会出现4秒内总的请求量达到200,超出了设置的阈值。

滑动窗口算法

滑动窗口算法是将时间周期分为N个小周期(窗口),分别记录每个小周期内访问次数,然后根据时间将窗口往前滑动并删除过期的小时间窗口。最终只需要统计滑动窗口范围内的所有小时间窗口总的计数即可。

image.png

将一分钟拆分为4个小时间窗口,每个小时间窗口最多能够处理25个请求。并且通过虚线框表示滑动窗口的大小(当前窗口的大小是2,也就是在这个窗口内最多能够处理50个请求)。同时滑动窗口会随着时间往前移动,比如前面15s结束之后,窗口会滑动到15s~45s这个范围,然后在新的窗口中重新统计数据。

由此可见,当滑动窗口的格子划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。此算法可以很好的解决固定窗口算法的临界问题。

令牌桶限流算法

令牌桶是网络流量整形(Traffic Shaping)和速率限制(Rate Limiting)中最常使用的一种算法。对于每一个请求,都需要从令牌桶中获得一个令牌,如果没有获得令牌,则需要触发限流策略。

image.png

系统会以一个恒定速度(r tokens/sec)往固定容量的令牌桶中放入令牌,如果此时有客户端请求过来,则需要先从令牌桶中拿到令牌以获得访问资格。

限流场景

假设令牌生成速度是每秒10个,也就等同于QPS=10,此时在请求获取令牌的时候,会存在三种情况:

• 请求速度大于令牌生成速度:那么令牌会很快被取完,后续再进来的请求会被限流。

• 请求速度等于令牌生成速度:此时流量处于平稳状态。

• 请求速度小于令牌生成速度:说明此时系统的并发数并不高,请求能被正常处理。

由于令牌桶有固定的大小,当请求速度小于令牌生成速度时,令牌桶会被填满。所以令牌桶能够处理突发流量,也就是在短时间内新增的流量系统能够正常处理,这是令牌桶的特性。

漏桶限流算法

漏桶限流算法的主要作用是控制数据注入网络的速度,平滑网络上的突发流量。

image.png

在漏桶算法内部同样维护一个容器,这个容器会以恒定速度出水,不管上面的水流速度多快,漏桶水滴的流出速度始终保持不变。访问请求到达时直接放入漏桶,如当前容量已达到上限(限流值),则进行丢弃(触发限流策略)。漏桶以固定的速率进行释放访问请求(即请求通过),直到漏桶为空。实际上消息中间件就使用了漏桶限流的思想,不管生产者的请求量有多大,消息的处理能力取决于消费者。

限流场景

在漏桶限流算法中,存在以下几种可能的情况:

• 请求速度大于漏桶流出水滴的速度:也就是请求数超出当前服务所能处理的极限,将会触发限流策略。

• 请求速度小于或者等于漏桶流出水滴的速度,也就是服务端的处理能力正好满足客户端的请求量,将正常执行。

漏桶限流算法和令牌桶限流算法的实现原理相差不大,最大的区别是漏桶无法处理短时间内的突发流量,漏桶限流算法是一种恒定速度的限流算法。

四种算法比较

image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352