5、Longest Palindromic Substring

经典的最长回文子串问题,有很多种解法,这里列出两到三种。
Example

Input: "babad"
Output: "bab"
Input: "cbbd"
Output: "bb"

解法一:
动态规划
思路
根据回文的特性,一个大回文按比例缩小后的字符串也必定是回文,比如ABCCBA,那BCCB肯定也是回文。所以我们可以根据动态规划的两个特点:第一大问题拆解为小问题,第二重复利用之前的计算结果,来解答这道题。
1、先把所有长度最短为1的子字符串计算出来,根据起始位置从左向右,这些必定是回文。
2、计算所有长度为2的子字符串,再根据起始位置从左向右。
3、到长度为3的时候,就可以利用上次的计算结果:如果中心对称的短字符串不是回文,那长字符串也不是,如果短字符串是回文,那就要看长字符串两头是否一样。
这样,一直到长度最大的子字符串,我们就把整个字符串集穷举完了,但是由于使用动态规划,使计算时间从O(N3)减少到O(n2)。

注意
外循环的变量控制的实际上不是字符串长度,而是字符串首到尾的增量
二维数组的第一维是指子字符串起始位置,第二维是指终止位置,所存数据表示是否回文

public class Solution {
    public String longestPalindrome(String s) {
        int maxLength = 0;
        int maxStart = 0;
        int len = s.length();
        boolean[][] dp = new boolean[len][len];
        //i是字符串长度
        for(int i = 0; i < len; i++){
            //j是字符串起始位置
            for(int j = 0; j < len - i; j++){
                if(i==0||i==1){
                    //如果字符串长度为0,必定为回文
                    dp[j][j+i] = true;
                } else if(s.charAt(j+i)==s.charAt(j)){
                    //如果左右两端相等,那只要中心对称子字符串是回文就是回文
                    dp[j][j+i] = dp[j+1][j+i-1];
                } else {
                    //否则不是回文
                    dp[j][j+i] = false;
                }
                if(dp[j][j+i] && i > maxLength){
                    maxLength = i + 1;
                    maxStart = j;
                }
            }
        }
        return s.substring(maxStart,maxStart + maxLength);
    }
}

解法二:
中心扩散法
复杂度
时间 O(n^2) 空间 O(1)

思路
动态规划虽然优化了时间,但也浪费了空间。实际上我们并不需要一直存储所有子字符串的回文情况,只需要知道中心对称的较小一层是否是回文。所以如果我们从小到大连续以某点为个中心的所有子字符串进行计算,就能省略这个空间。
这种解法中,外层循环遍历的是子字符串的中心点,内层循环则是从中心扩散,一旦不是回文就不再计算其他以此为中心的较大的字符串。
由于中心对称有两种情况,一是奇数个字母以某个字母对称,而是偶数个字母以两个字母中间为对称,所以我们要分别计算这两种对称情况。

public class Solution {
    String longest = "";
    
    public String longestPalindrome(String s) {
        for(int i = 0; i < s.length(); i++){
            //计算奇数子字符串
            helper(s, i, 0);
            //计算偶数子字符串
            helper(s, i, 1);
        }
        return longest;
    }
    
    private void helper(String s, int idx, int offset){
        int left = idx;
        int right = idx + offset;
        while(left>=0 && right<s.length() && s.charAt(left)==s.charAt(right)){
            left--;
            right++;
        }
        // 截出当前最长的子串
        String currLongest = s.substring(left + 1, right);
        // 判断是否比全局最长还长
        if(currLongest.length() > longest.length()){
            longest = currLongest;
        }
    }
}

解法三:
马拉车算法
首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。 为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如$#a#b#a#。

public class Solution {
    public String longestPalindrome(String s) {
        if(s.length()<=1){
            return s;
        }
        // 预处理字符串,避免奇偶问题
        String str = preProcess(s);
        // idx是当前能够向右延伸的最远的回文串中心点,随着迭代而更新
        // max是当前最长回文串在总字符串中所能延伸到的最右端的位置
        // maxIdx是当前已知的最长回文串中心点
        // maxSpan是当前已知的最长回文串向左或向右能延伸的长度
        int idx = 0, max = 0;
        int maxIdx = 0;
        int maxSpan = 0;
        int[] p = new int[str.length()];
        for(int curr = 1; curr < str.length(); curr++){
            // 找出当前下标相对于idx的对称点
            int symmetryOfCurr = 2 * idx - curr;
            // 如果当前已知延伸的最右端大于当前下标,我们可以用对称点的P值,否则记为1等待检查
            p[curr] = max > curr? Math.min(p[symmetryOfCurr], max - curr):1;
            // 检查并更新当前下标为中心的回文串最远延伸的长度
            while((curr+p[curr])<str.length() && str.charAt(curr+p[curr])==str.charAt(curr-p[curr])){
                p[curr]++;
            }
            // 检查并更新当前已知能够延伸最远的回文串信息
            if(curr+p[curr]>max){
                max = p[curr] + curr;
                idx = curr;
            }
            // 检查并更新当前已知的最长回文串信息
            if(p[curr]>maxSpan){
                maxSpan = p[curr];
                maxIdx = curr;
            }
        }
        //去除占位符
        return s.substring((maxIdx-maxSpan)/2,(maxSpan+maxIdx)/2-1);
    }
    
    private String preProcess(String s){
        // 如ABC,变为$#A#B#C#
        StringBuilder sb = new StringBuilder();
        sb.append("$");
        for(int i = 0; i < s.length(); i++){
            sb.append("#");
            sb.append(s.charAt(i));
        }
        sb.append("#");
        return sb.toString();
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容