本文章从CSDN上转移过来
http://blog.csdn.net/mounty_fsc/article/details/51085072
1. 简介
- 功能:为一个模板函数,把数据类型为_Tp的一组集合进行聚类,分成若干个类别。
- 思想:该算法为《算法导论》(Introduction to Algorythms)中Data structures for disjoint sets章节描述的不相交集的实现,算法思想见博文(Algorithm)不相交集(Disjoint-set) 。
- 该算法为聚类算法,属于层次聚类算法(Hierarchical Clustering),思想上符合AGNES (Agglomerative Nesting),一种从底向上聚类的算法。但实现上还有有些区别。
2. 源代码
源代码注释写的非常详细了,要注释的内容不多。
/** @brief Splits an element set into equivalency classes.
@param _vec Set of elements stored as a vector.
@param labels Output vector of labels. It contains as many elements as vec.
Each label labels[i] is a 0-based cluster index of `vec[i]`.
@param predicate Equivalence predicate (pointer to a boolean function of two arguments or an
instance of the class that has the method bool operator()(const _Tp& a, const _Tp& b) ). The
predicate returns true when the elements are certainly in the same class, and returns false
if they may or may not be in the same class.
*/
template<typename _Tp, class _EqPredicate> int
partition( const vector<_Tp>& _vec, vector<int>& labels,
_EqPredicate predicate=_EqPredicate())
{
int i, j, N = (int)_vec.size();
const _Tp* vec = &_vec[0];
const int PARENT=0;
const int RANK=1;
vector<int> _nodes(N*2);
int (*nodes)[2] = (int(*)[2])&_nodes[0];
// The first O(N) pass: create N single-vertex trees
for(i = 0; i < N; i++)
{
nodes[i][PARENT]=-1;
nodes[i][RANK] = 0;
}
// The main O(N^2) pass: merge connected components
// 注意:
// root表示i的根节点
// root2表示j的根节点
// 在执行predicate时是i,j节点而不是root,root2节点,这样就保证了
// 原始的N个基本元素间互相都做了比较
for( i = 0; i < N; i++ )
{
int root = i;
// find root
while( nodes[root][PARENT] >= 0 )
root = nodes[root][PARENT];
for( j = 0; j < N; j++ )
{
if( i == j || !predicate(vec[i], vec[j]))
continue;
int root2 = j;
while( nodes[root2][PARENT] >= 0 )
root2 = nodes[root2][PARENT];
if( root2 != root )
{
// unite both trees
int rank = nodes[root][RANK], rank2 = nodes[root2][RANK];
if( rank > rank2 )
nodes[root2][PARENT] = root;
else
{
nodes[root][PARENT] = root2;
nodes[root2][RANK] += rank == rank2;
root = root2;
}
assert( nodes[root][PARENT] < 0 );
int k = j, parent;
// compress the path from node2 to root
while( (parent = nodes[k][PARENT]) >= 0 )
{
nodes[k][PARENT] = root;
k = parent;
}
// compress the path from node to root
k = i;
while( (parent = nodes[k][PARENT]) >= 0 )
{
nodes[k][PARENT] = root;
k = parent;
}
}
}
}
// Final O(N) pass: enumerate classes
labels.resize(N);
int nclasses = 0;
for( i = 0; i < N; i++ )
{
int root = i;
while( nodes[root][PARENT] >= 0 )
root = nodes[root][PARENT];
// re-use the rank as the class label
// 这部分代码写的很漂亮、巧妙
// 把i所在类的根节点的秩赋值为类别值
// 但做了取反得到对应的负数,下一次if就不用执行了
if( nodes[root][RANK] >= 0 )
nodes[root][RANK] = ~nclasses++;
labels[i] = ~nodes[root][RANK];
}
return nclasses;
}
3. 应用
在去除物体检测中,常常需要对重复的bounding box删除,需要使用groupRectangles函数,该函数则是对partition的一层封装。在gropRectangels中,计算矩形间相似度的_EqPredicate为SimilarRects,其定义如下,几何上来说,如果矩阵r1,r2在空间上是比较接近的,则返回true,否则false。但是值得注意的是,如果r1包含r2,则不一定会判定为r1与r2很接近,所以在HOG中的,gropRectangels还进行了一层去除包含关系的操作。
class CV_EXPORTS SimilarRects
{
public:
SimilarRects(double _eps) : eps(_eps) {}
inline bool operator()(const Rect& r1, const Rect& r2) const
{
// delta为最小长宽的eps倍,
double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
// 如果矩形的四个顶点的位置差别都小于delta,则表示相似的矩形
return std::abs(r1.x - r2.x) <= delta &&
std::abs(r1.y - r2.y) <= delta &&
std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
}
double eps;
};