单细胞36计之22---单细胞转录组做WGCNA

第二十二计 关门捉贼

一般教程都是针对传统的bulk转录组测序的表达矩阵,其实单细胞转录组也是拿到表达矩阵,只不过是有一些特性,比如非常多的0值等等。那么有没有这样的研究尝试把WGCNA融入单细胞转录组数据分析呢?

答案是有的,Posted March 04, 2019. 丢在预印本的文章,题目是:[Single-Cell RNA Sequencing Reveals Regulatory Mechanism for Trophoblast Cell-Fate Divergence in Human Peri-Implantation Embryo](Single-Cell RNA Sequencing Reveals Regulatory Mechanism for Trophoblast Cell-Fate Divergence in Human Peri-Implantation Embryo) 就这样做了,让我们一起来看看吧。

背景

To obtain transcriptomic profiles of human trophoblast cells during peri-implantation development, we harvested single cells from 19 embryos from day 6 to day 10, complement with 25 endometrial cells. Transcriptomes from 614 single cells were successfully profiled, with 0.7 million uniquely mapped reads and 24,011 detected transcripts per cell on average.数据都是在:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125616

主要样品是人类着床前胚胎的 Trophoblasts 进行单细胞转录组测序,其中516 embryonic cells 可以分成476 TE-, 14 EPI-and 26 PE-lineage cells. 最后的分析重点是 476 individual trophoblast cells isolated from 19 human embryos

  • cells of epiblast (EPI),
  • primitive endoderm q (PE)
  • trophectoderm (TE)

当然了,还有少量的endometrial cells,第一主成分就可以区分开来它们,如下:

image

Embryonic cells were assigned into three lineages, namely TE, EPI and PE, based on their expression of 300 previous identified lineage marker genes. 需要相关生物学知识。

其中时间这个属性也是在PCA上面反映到:

image

不管是时间这个属性天然对单细胞分组,还是整体的表达矩阵进入单细胞数据分析流程后分组, 都是可以看基因表达量情况的小提琴图等等。分析其实仍然是我们一直讲解的R包及基础流程,分别是: scater,monocle,Seurat,scran,M3Drop 需要熟练掌握它们的对象,:一些单细胞转录组R包的对象 流程也大同小异:

  • step1: 创建对象
  • step2: 质量控制
  • step3: 表达量的标准化和归一化
  • step4: 去除干扰因素(多个样本整合)
  • step5: 判断重要的基因
  • step6: 多种降维算法
  • step7: 可视化降维结果
  • step8: 多种聚类算法
  • step9: 聚类后找每个细胞亚群的标志基因
  • step10: 继续分类

WGCNA步骤

To systematically investigate the genetic program dynamics, we performed Weighted Gene Co-expression Network Analysis (WGCNA) on 2,464 genes that were variably expressed in trophoblast cells between different developmental stages.

WGCNA identified eight gene modules, each of which contains a set of genes that tend to be coexpressed at a certain development stage!

可以看到WGCAN其实大家需要注意的是挑选基因,然后判断模块,最后关联起来性状即可!

image

研究者感兴趣的生物学组别

其实是:

  • cytotrophoblast (CT),
  • extravillous cytotrophoblast (EVT)
  • syncytiotrophoblast (ST)

所以才会有如下图表:

image

原文链接:https://www.jianshu.com/p/a68dd140dd4a
作者:生信技能树

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容